
Resource Help

General Information

DEFINITION OF THE CURRENT LINE

Most functions in ReSource operate only on the current line. Because there
is no real "cursor", it is necessary to define the "current line":

The "current line" is the first displayed disassembly line. This may be
displayed in one of five data types, "code", "bytes", "words", "longwords" or
"ascii".

The "cursor position" refers to the first byte of the current line

When scrolling, ReSource moves one "disassembly line" at a time (minimum).
This consists of one of the above types of lines, and possibly other text
lines that are attached to the line of disassembly. Consider the following:

 SECTION Lister000000,CODE
ProgStart
; This routine converts an ascii string to binary
; A0 -> null terminated string
; returns number in D0.L

AscToBin MOVEM.L D1-D6/A0-A6,-(SP) ; save some registers
1$ EQU *-2

The above example consists of the following lines (in order):

1. A section statement.

2. ReSources' special program start label. This may be used by code lines
 that reference the segment list.

3. Three full-line comments.

4. A user-defined blank line. This can be done by creating a full-line
 comment, and specifying "; " as the string to use.

5. A code line, using both a label, and an end-of-line comment.

6. A hidden label. These are quite rare in most programs. Some "C"
 compilers use them in case statements.

When you use the "CURSOR/Relative/Next line" command, ReSource will move to the
next disassembly line, and in the above example, this will be equivalent to
scrolling nine "text" lines. ReSource is *not* a text editor, or a word
processor, even though the user interface is similar in some respects.
Understanding the makeup of a disassembly line will help in making the best use
of ReSource.

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 1 of 93

Resource Help

General Information

DATA TYPES

ReSource currently uses nine data types. These are CODE, ASCII, BYTES,
WORDS, LONGWORDS, SINGLE, DOUBLE, EXTENDED, and PACKED. Examples follow:

Example CODE lines:

lbC00000C MOVEM.L D0/A0,-(SP)
 MOVEA.L (4),A6
 LEA (doslibrary.MSG,PC),A1
 MOVEQ #$27,D0
 JSR (_LVOOpenLibrary,A6)

Example ASCII lines:

Unknownoption.MSG db 'Unknown option %c ignored',$A,0
snotfound.MSG db '%s not found',$A,0
 db 'Cannot examine directory',$A,0

Example BYTE lines:
 db 4
 db 3,$23,14
 dcb.b 14,0
 dx.b $1A0
 ds.b $1A0

Example WORD lines:
 dw 4
 dw 3,$23,14
 dcb.w 14,0
 dx.w $D0
 ds.w $D0

Example LONGWORD lines:
 dl 4
 dl 3,$23,14
 dcb.l 14,0
 dx.l $68
 ds.l $68

Example SINGLE, DOUBLE, EXTENDED and PACKED lines:
 dc.s 2.0
 dc.d 1.23E25
 dc.d 200.0,-118.64,-0.0
 dcb.d 7,0
 dc.x 3.14159
 dc.p 1.414213562
 ds.s 4
 ds.d 3
 dx.x 2
 dx.p 1

Double, Extended and Packed data types must be displayed in their native
format--the numeric base may not be changed.

ReSource will try to automatically assign floating point data types during
a code scan. However, because of the uncertanties involved, some data
references will need to be resolved by hand.

See also:

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 2 of 93

Resource Help

General Information

DATA TYPES

 "numeric types"

LINES, SCROLLING BACKWARDS...

For every byte in a file, ReSource maintains an attribute bit (#31) that
specifies whether this byte is the start of a line or not. This information
is required when scrolling backwards, in avoiding a jerky display. Under
certain conditions, the maintainance of this bit can result in short delays.

For example, if you load a very large file as a binary image, and immediately
set the data type at the start of the file say, to "ascii" or "code", and
then move the cursor directly to the end of the file, ReSource is forced to
scan the entire file, to properly determine which actual byte starts the last
line in the file. When a scan of more than 1K is required, the wait pointer
will appear, to let you know that ReSource is temporarily busy.

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 3 of 93

Resource Help

General Information

USING DYNAMIC STRING INDIRECTION

When supplying a string (to a string requester) that will become a label,
symbol, or comment, you may use indirection to include in that string, some
other predefined label, symbol, or comment. Indirection means a string is
not used literally. Rather, it somewhat resembles a macro in that it
"points" to other information, and is "expanded" when later encountered.
Indirection must start with an "escape" character (just hit the "escape"
key), and must be followed by a decimal digit between zero and three,
inclusive. This is how you specify which type of string that you require:

0 = Label
1 = Symbol
2 = Full-line comment (the first one attached to a line only)
3 = End-of-line comment

This should be immediately followed by a hex, decimal, or binary number,
specifying the offset in the current file to which the required string is
attached. Another escape character is required immediately following the
number, as a delimiter. You are then free to either supply more literal
text, or you may use indirection several times within a single string.
Consider the following program fragment:

lbW000140 DW 6
 DW 8
 DW 12
lbC000146 RTS

lbC000148 MOVEQ #0,D0
 RTS

lbC00014C MOVEQ #1,D0
 RTS

The word values at label "lbW000140" correspond to the distance between
"lbC000146" and "lbW000140" on the first line (6), the distance between
"lbC000148" and "lbW000140" on the second line (8), and the distance between
"lbC00014C" and "lbW000140" on the third line (12). This is what is commonly
referred to as a "jump table". In order to make the program assemble properly,
the values 6, 8, and 12 should be changed to symbols specifying their true
meaning, rather than just the value that they were when the program was last
assembled/compiled:

lbW000140 DW lbC000146-lbW000140
 DW lbC000148-lbW000140
 DW lbC00014C-lbW000140
lbC000146 RTS

lbC000148 MOVEQ #0,D0
 RTS

lbC00014C MOVEQ #1,D0
 RTS

The above example addresses the immediate problem of representing the offsets
symbolically. However, if you later change the label "lbC000146" to "NullSub",
for instance, the symbol "lbC000146-lbW000140" will cause an assembly error
because the assembler will not be able to find the label "lbC000146". By using
dynamic indirection, whenever the symbol at label "lbW000140" is displayed,
ReSource will use whatever label is defined at that moment. (Because the escape

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 4 of 93

Resource Help

General Information

USING DYNAMIC STRING INDIRECTION

character is not normally displayable, the following example will use a carat,
"^", to represent the escape character.) For the line:

lbW000140 DW lbC000146-lbW000140

instead of creating the symbol "lbC000146-lbW000140", you would instead
specify "^0$146^-^0$140^" when asked by the "LABELS/Create single/Symbol"
function.

Dynamic indirection is also used internally in ReSource. For example, the
"SPECIAL FUNCTIONS/Convert specific EA's/" functions now use dynamic indirection
when creating symbols.

Functions that access labels, symbols, and comments will normally support
dynamic indirection in strings, unless the option "OPTIONS/Show/Symbols/" is
OFF. In this case, the literal string will be used. Dynamic indirection is
relatively safe to use with symbols. It is possible to use with labels and
comments, however some problems may arise if care is not taken. Duplicate
labels may easily be created if dynamic indirection is used in the specification
for a label. It should be quite safe in any comments, however. Symbols
containing dynamic indirection will not be stored in the EQUate or xref tables.
It is expected that most strings using indirection will be symbols, that refer
to labels, and therefore will not require to be EQUated or xref'd.

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 5 of 93

Resource Help

General Information

RELOC32

In Amiga loadable files (executables, fonts, device drivers, libraries etc.),
there may be (and generally is) absolute pointers, to locations either within
the file, or at least at some location at a set offset from the start of one
of the hunks. When the program is executed (or used, in the case of fonts),
these absolute pointers must contain the correct 32-bit memory address.

Because the Amiga is a multitasking system, programs must be able to be
loaded to any memory address that happens to be available at the time of
loading. So, the system used to make sure that the absolute 32-bit pointers
will contain the correct addresses at run time is termed "reloc32"
(relocation of 32-bit addresses).

Being able to see where relocation has been performed is extremely useful when
disassembling a program. Particularly, in determining data types, whenever you
see reloc32, you know for *certain* that the four bytes within the reloc32 area
are not the start of a code line, and they are not ascii. In fact, you will
find that there is only two uses of reloc32 in a program:

1. The first byte of the reloc32 is the start of a longword data item.

2. At an even number of bytes, generally 2,4 or 6 before the first byte of the
 reloc32, is the start of a line of code that uses absolute addressing.

If it were not for the relocation information, disassembling programs would be
many times harder. ReSource makes much use of this information internally.

The following example lines will each produce a reloc32 area:

 dl 1$
1$ dl ProgStart-4
 dl *-8

The following example lines will NOT produce reloc32 areas:

 dl 1$-* ;an offset, NOT an address
1$ dl 0
 dl *-1$;another offset - NOT reloc32
 dl 14*88
 dl $BFEC01
 dl $FC01AE

The last two lines above *are* absolute pointers, but the addresses are not
relative to a location in this program, thus they will not be reloc32.

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 6 of 93

Resource Help

General Information

EFFECTIVE ADDRESS CONVERSIONS

These functions were specifically designed to be used when disassembling 'C'
programs, in which an address register is frequently used as a base register for
accessing data, throughout all or most of the program. Let's use an example
program here:

 SECTION test000000,CODE
 LEA lbB00011E,A4 ; scanning has already been done
 LEA (0,A4),A1
 MOVE.L ($000C,A4),D0

 ... ; rest of code

 SECTION test00011E,DATA
lbB00011E db 'dos.library',0
 dl $00010001
 END

In the above example program, the A4 register points to the start of the data
segment. There are three ways to tell ReSource where the A4 register points;
in the above example, the "This operand" function could be used with the cursor
at start of file, or the "This address" function could be used with the cursor
at offset $00011E, or the "Specify" function could be used, supplying a
parameter of "$11E". Basically, with this function you are telling ReSource
where the A4 register can be assumed to be pointing, relative to the start of
the program. After you do this, any effective address that involves a word
offset to the A4 register, will be shown symbolically. If you have selected
"Convert (xx,An) EA's/Absolute", the effective addresses will be shown as
absolute addresses. Thus, the example program above will appear as:

 SECTION test000000,CODE
 LEA lbB00011E,A4
 LEA lbB00011E,A1
 MOVE.L lbL00012A,D0

 ... ; rest of code

 SECTION test00011E,DATA
lbB00011E db 'dos.library',0
lbL00012A dl $00010001 ; This label will be created after
 END ; left-Amiga mouse-button is used.

On the other hand, if you had selected "Convert (xx,An) EA's/Relative", the
effective addresses would be shown as symbolic word offsets, and our example
program would look like this:

 SECTION test000000,CODE
 LEA DT,A4 ; Note the new base label "DT"
 LEA (lbB00011E-DT,A4),A1
 MOVE.L (lbL00012A-DT,A4),D0

 ... ; rest of code

 SECTION test00011E,DATA
DT
lbB00011E db 'dos.library',0
lbL00012A dl $00010001 ; This label will be created after
 END ; left-Amiga mouse-button is used.

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 7 of 93

Resource Help

General Information

EFFECTIVE ADDRESS CONVERSIONS

The advantage here is that labels can automatically be created where they could
not before. With a little more work, our code could look like this:

 SECTION test000000,CODE
 LEA DT,A4
 LEA (DOSName-DT,A4),A1
 MOVE.L (Mem_Parms-DT,A4),D0

 ... ; rest of code

 SECTION test00011E,DATA
DT
DOSName db 'dos.library',0
Mem_Parms dl MEMF_CLEAR!MEMF_PUBLIC
 END

If this conversion process is not used, it is likely that the program will not
successfully re-assemble, as different assemblers will assemble the same source
code into different length opcodes. For example, the Metacomco assembler
normally does virtually no optimizing, and so the resulting program is often
larger than the original, even if the source code has not been modified. For
example, take the line:

 MOVEA.L (4),A6

If absolute long addressing is used, the instruction above will be 6 bytes long,
whereas if absolute short addressing is used (as will be the case when you
assemble with Macro68), it will be only 4 bytes long. Where you wish to do EA
conversions in only a portion of a program, you can set the lower and upper
limits. See:

SPECIAL FUNCTIONS/Convert (xx,An) EA's/Set lower limit
SPECIAL FUNCTIONS/Convert (xx,An) EA's/Set upper limit

You can further define conversions to only data references. See:

SPECIAL FUNCTIONS/Convert (xx,An) EA's/Data refs only
SPECIAL FUNCTIONS/Convert (xx,An) EA's/All references

Changing to absolute EA's will increase the size of the resulting program,
unless you convert back to relative addressing when assembling (assuming that
you will be using Macro68). Please note that this function may be used with
ANY register as the base register.

See "SPECIAL FUNCTIONS/Specify Base Register".

If the label, "DT", is not defined by the user, ReSource will define it for
you. It will be attached to the last DATA hunk in the file, or if no DATA
hunks exists, the last BSS hunk, or failing that, the last CODE hunk. Be
aware that a few programs define "DT" outside of, but relative to one of the
hunks. In most cases, this does not present a problem. However, in a
program with more than one hunk, when "DT" is defined as being at some
negative offset from the start of any hunk other than the first, there is a
problem. To ReSource, this will appear that the reference is relative to the
previous hunk. When this situation arises, you must manually define the
label "DT", equating it relative to the correct hunk:

SECTION First,CODE

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 8 of 93

Resource Help

General Information

EFFECTIVE ADDRESS CONVERSIONS

... (first hunk contents)

SECTION Second,DATA

DT equ *-120

To summarize:

EA conversions are enabled with the functions:
SPECIAL FUNCTIONS/Convert (xx,An) EA's/This operand
SPECIAL FUNCTIONS/Convert (xx,An) EA's/This address
SPECIAL FUNCTIONS/Convert (xx,An) EA's/Specify

EA conversions are disabled with the function:
SPECIAL FUNCTIONS/Convert (xx,An) EA's/Disable

The address register to be used can be specified with the functions:
SPECIAL FUNCTIONS/Specify Base Register/A0
SPECIAL FUNCTIONS/Specify Base Register/A1
SPECIAL FUNCTIONS/Specify Base Register/A2
SPECIAL FUNCTIONS/Specify Base Register/A3
SPECIAL FUNCTIONS/Specify Base Register/A4
SPECIAL FUNCTIONS/Specify Base Register/A5
SPECIAL FUNCTIONS/Specify Base Register/A6
SPECIAL FUNCTIONS/Specify Base Register/A7

The upper and lower limits of the conversion can be set using:
SPECIAL FUNCTIONS/Convert (xx,An) EA's/Set lower limit
SPECIAL FUNCTIONS/Convert (xx,An) EA's/Set upper limit

Conversion can be further limited to data references only using:
SPECIAL FUNCTIONS/Convert (xx,An) EA's/Data refs only

Conversion can be enabled for all reference types using:
SPECIAL FUNCTIONS/Convert (xx,An) EA's/All references

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 9 of 93

Resource Help

General Information

MACROS

The macro facilities available in ReSource are quite extensive. There are
currently a maximum of 57 macros available on line at one time. These are
divided into 3 banks of 19 macros in the menus.

The 19th macro is special, in that it is executed when you first run
ReSource, after the first file is loaded. For most people, this macro will
often contain functions to set the various options to your personal taste, but
may contain anything you care to put into it. The "PROJECT/Save Configuration"
function *creates* macro #19, but you can create it too.

When first creating a macro, you will be asked to supply a name for it. This
name will be shown in the MACRO menu immediately after, and if you save macros
to a file, the names of the macros are also saved.

The functions:
"MACROS 1/Execute/ - Macros 1 - "
"MACROS 2/Execute/ - Macros 2 - "
"MACROS 3/Execute/ - Macros 3 - "

are used to give each macros bank a name. These names are also saved when
you save macros, and when you load the macro file later, these names will
immediately appear in the menus.

The size of a macro is limited only by how much memory you have. To create a
macro, select one of the sub-items in:

MACROS 1/Create/
MACROS 2/Create/
MACROS 3/Create/

If the current name for the macro is "-empty-", you will be asked to supply a
new name for the macro. If you create a macro of zero length, the name for that
macro will revert to back to "-empty-". To execute the macro, simply select the
appropriate sub-item in:

MACROS 1/Execute/
MACROS 2/Execute/
MACROS 3/Execute/

You have control over the speed at which macros execute. The following chart
indicates whether there will be a delay, and for how long, and whether the
display will be refreshed between executing functions within the macro.

Speed Selected Delay Screen Refresh Titlebar refresh
-------------- ----- -------------- ----------------
Fastest No No No
Very Fast No No Yes
Fast No Yes Yes
Slow .1 sec Yes Yes
Very Slow .5 sec Yes Yes

To have complete control over execution of the macro, select
"MACROS 1/Execution speed/Wait on mouse".

With this selected, you must press and release the left mouse button for each
and every function within the macro to be executed. If you have selected
"DISPLAY/Titlebar info/Function names" also, the titlebar will display the
name of the function to be executed next. Combined with the "ShowMacros"

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 10 of 93

Resource Help

General Information

MACROS

utility, this is an excellent way of finding bugs in a macro that you (or
someone else) has created. Macros may be nested within macros, provided that
the nesting depth does not exceed (approx.) 30.

While you are creating a macro, you might find that you have to execute some
functions to continue the macro definition, but you don't want them included in
the macro itself. When this situation arises, select
"MACROS 1/Suspend learn/suspend", select the various functions that need to
be done, then select "MACROS 1/Suspend learn/Normal" to continue the macro
definition.

There are many functions that will make a macro fail, when it is executed. For
example, using a cursor movement function that would place the cursor outside of
the current file, will cause a macro 'fail'. A failed search will also cause a
macro 'fail'. When executing a macro, if ReSource detects a macro 'fail', it
searches forward in the macro definition for a "Conditional end" directive. If
none is found, all macro processing aborts immediately. If one IS found, macro
processing continues normally from that point in the macro definition. If,
while searching for a "End conditional" directive, a "Start conditional"
directive is found, the next "End conditional" is skipped. Thus, conditional
macro processing may be nested.

There are five macro labels available. These are placed into the macro
definition, and you can insert "goto previous macro label" and "goto next macro
label" directives into the macro definition, which when found, will start a
search either forward or backward, for the appropriate macro label. When found,
macro processing will proceed normally from that point forward. Thus, you can
loop a macro. If a search is made backwards for a macro label that is non-
existent, macro processing will continue from the start of the macro definition.
If a search is made forward for a macro label that is non-existent, the macro
will exit, possibly to another macro that called this one. For example, the
following macro will continuously scroll forward to the end of the file, then
scroll backwards, one line at a time, to the start of the file, then forward to
the end of the file again, etc., indefinitely, stopping only when you press
rightAmiga-A (abort).

MACROS 1/Set macro label/#1
CURSOR/Relative/Next line
MACROS 1/Previous macro label/#1
MACROS 1/Directives/End conditional
MACROS 1/Set macro label/#2
CURSOR/Relative/Previous line
MACROS 1/Previous macro label/#2
MACROS 1/Directives/End conditional
MACROS 1/Previous macro label/#1

Notice that the directive "Start conditional" was not required in the above
example, as conditional sections were NOT nested.

When you are creating a macro, and you are asked for a string (even the name of
a file to load), if you select "Store" or press return after supplying a string,
the string will be stored in the macro definition, and will be used when the
macro is later executed, unless at the time that you execute the macro,
"MACROS 1/Interactive/On" has been selected. In this case, you will be prompted
for any strings that are requested during the execution of the macro. Normally,
this will not be required, but it does give you more control over an executing
macro, especially if it was created by someone other than yourself.

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 11 of 93

Resource Help

General Information

MACROS

If, when creating a macro, you are asked for a string, and you want to force the
user to input a string during the execution of the macro, you should select the
"Use" gadget in the string requester. In this case, any string that you typed
into the requester will still be used while creating the macro, however when the
macro is executed, the user is forced to input a new string each time, even
though 'Interactive' may be set to "OFF".

Instead of actually supplying a string literal to a string requester, you may
instead use buffer indirection, to force the string to get copied from either
the accumulator, or from one of the buffers A-M.

For example, if you wanted to create a comment, using the next encountered
symbol, you could use the following macro:

CURSOR/Relative/Next symbol
CURSOR/Relative/Next byte
CURSOR/Relative/Previous line
STRINGS/Get/Symbol
LABELS/Create single/End-of-line comment (<esc><esc>)

Thus, the following code:

lbC002C68 MOVE.L A6,-(SP)
 MOVEA.L (Intution_Base,PC),A6
 MOVEA.L (8,SP),A0
 JSR (_LVOOpenWindow,A6)
 MOVEA.L (SP)+,A6
 RTS

would become:

lbC002C68 MOVE.L A6,-(SP) ; _LVOOpenWindow
 MOVEA.L (Intution_Base,PC),A6
 MOVEA.L (8,SP),A0
 JSR (_LVOOpenWindow,A6)
 MOVEA.L (SP)+,A6
 RTS

Buffers A-M are simply 13 separate 240-byte string buffers, in which you can
store strings. A more appropriate name might be 'text registers'.

Buffers L and M are special, in that if you select "STRINGS/Define string/M",
if buffer L is not empty, the string contained in it will be used as the
prompt, in the requester. This is handy during macros functions where you
want to get a string from the user. The user can then see what the string is
required for.

Normally, every function you put into a macro definition will be executed. This
does not always have to be the case. The "MACROS 1/Commentary/" functions sets
the commentary level. When creating a macro, if you set the commentary level to
"None", it is like specifying "The functions following are absolutely essential
to the execution of this macro". If you set the commentary level to "Full"
during the creation of a macro, you are specifying "The functions following are
by no means required, they are simply running commentary, perhaps explaining
what is happening in the macro at this point". Thus, by setting the commentary
level during the creation of a macro, you are letting ReSource know how
important the functions are, that follow.

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 12 of 93

Resource Help

General Information

MACROS

The commentary level may be changed many times during a macro, and for
tutorial macros, such as showing someone how to disassemble/zap a particular
program, the commentary level should be set appropriately. When it comes
time to execute the macro, if the commentary level is set to "Full" by the
user before the macro starts executing, ALL functions within the macro will
be executed normally. If the commentary level was set to something other
than "Full", only those functions in the macro that were set to a commentary
level lower than that presently set, will be executed; the rest will be
skipped over. Examine the following example macro:

MACROS 1/Commentary level/Full
CURSOR/Relative/Next line
MACROS 1/Commentary level/Heavy
CURSOR/Relative/Next line
MACROS 1/Commentary level/Normal
CURSOR/Relative/Next line
MACROS 1/Commentary level/Light
CURSOR/Relative/Next line
MACROS 1/Commentary level/None
CURSOR/Relative/Next line

If you set the commentary level to "None" and execute this macro, the cursor
will move down one line. If you set the commentary level to "Light", and
execute this macro, the cursor will move down two lines. If you set the
commentary level to "Full" and execute this macro, the cursor will move down
five lines. Using the "SPECIAL FUNCTIONS/Dos command" function, you can use the
"SAY" command, to add speech to macros, to give excellent running commentary to
tutorial macros.

While executing a macro, if you have set the execution speed to "Wait on mouse",
you can use other functions, perhaps to scroll backwards or forwards, to see
what effect the last function had on the file. When you press the left mouse
button to single-step the next function in the macro, the cursor address is
restored in case you didn't return the cursor to the appropriate place within
the file. This is necessary, as if this were not done, macro processing would
not proceed normally from that point on.

And if you are single-stepping the execution of a macro, you may find it
handy to have "DISPLAY/Titlebar info/Function names" selected. This way, the
next function to be executed is displayed in the titlebar. This is also an
excellent way of learning about ReSource functions - by single stepping one
of the example macros, and watching carefully the names of the functions that
get executed.

When you load a macro file, only the numbered macros in the file will actually
overwrite macros already in ReSource. If the macro file only contains one
macro, then only the one macro will be overwritten, and the rest will remain
untouched. Thus, it is possible for a macro to load other macro files, giving
an "overlay" effect.

While a macro is executing, if the "CANCEL" gadget is selected for a requester,
the macro will abort immediately.

ReSource macro files may be disassembled, examined, edited, reassembled, and
reused. "ShowMacros" is a support utility on the ReSource distribution disk.

It is used to disassemble a ReSource macro file into an assembly language
source code file suitable for reassembly. The output is compatible with the

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 13 of 93

Resource Help

General Information

MACROS

Macro68, CAPE and Metacomco assemblers, and the (reassembled) output file may
be used by ReSource as a macro file immediately. If you are using the
Metacomco assembler, after assembly you may have to strip the loader
information from the file. To do this, simply load the file into ReSource as
a load file, and then immediately save as a binary image file.

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 14 of 93

Resource Help

General Information

NUMERIC TYPES

By default, all numbers are shown in hexadecimal (base 16). You can
individually change this to ASCII, DECIMAL, BINARY, or back to HEXADECIMAL on
any line by selecting from the appropriate sub-item. It is possible to
globally change the default to decimal for numbers less than 16, or less
than 10, using the "DISPLAY/Decimal conversion/" functions.

The function "DISPLAY/Set numeric base/ASCII" will enable virtually any number
at all to be shown as ASCII, providing that no non-valid ASCII characters are
present. Examples follow:

 dl $4E
 dl $4E00
 dl $4E004E00
 dl $4E4E00
 dl $4E000000
 dl $444F53
 dl $444F5300
 dl $4B49434B

will, by using the ASCII numeric base, be shown as:

 dl 'N'
 dl ('N'<<8)
 dl $4E004E00
 dl ('NN'<<8)
 dl ('N'<<24)
 dl 'DOS'
 dl ('DOS'<<8)
 dl 'KICK'

Note that the third line contained a non-valid ASCII character. Although some
others contained zeroes in the lower byte(s), they can be safely shown as being
an ASCII value shifted 8/16/24 to the left.

Double, Extended and Packed data types may not be shown as ASCII, or anything
other than their native format. They are also not subject to the Decimal
conversion function explained above.

Floating point data types are displayed in either decimal or scientific format
depending on the value of the number. The display routines will try to
provide the format that is clearest. Therefore, the value 100 will always be
shown as "100.0" and not as "1E2".

A very short synopsys of the format specifications for floating point data
types follows:

 Single-Precision binary real:

 Bit: 31 30 23 22 0
 +---+----------+----------+
 | S | Exponent | Mantissa |
 +---+----------+----------+

 Ranges (approximate):
 Maximum Positive Normalized 3.4 x 10(38)
 Minimum Positive Normalized 1.2 x 10(-39)
 Minimum Positive Denormalized 1.4 x 10(-45)

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 15 of 93

Resource Help

General Information

NUMERIC TYPES

 Double-Precision binary real:

 Bit: 63 62 52 51 0
 +---+----------+----------+
 | S | Exponent | Mantissa |
 +---+----------+----------+

 Ranges (approximate):
 Maximum Positive Normalized 18 x 10(307)
 Minimum Positive Normalized 2.2 x 10(-308)
 Minimum Positive Denormalized 4.9 x 10(-324)

 Extended-Precision binary real:

 Bit: 95 94 80 79 63 62 0
 +---+----------+--------+----------+
 | S | Exponent | Zero | Mantissa |
 +---+----------+--------+----------+

 Ranges (approximate):
 Maximum Positive Normalized 6 x 10(4931)
 Minimum Positive Normalized 8 x 10(-4933)
 Minimum Positive Denormalized 9 x 10(-4952)

 Packed-Decimal (BCD) real:

 +------------ Sign of Mantissa 0=Positive, 1=Negative
 | +------- Sign of Exponent " "
 | | +-- Used only for +/- Infinity or NAN(s)
 | | |
 Bit: 95 94 93 91 88 87 84 83 80 79 76 75 72 71 68
 +----+----+----+------+------+------+------+------+------+
 | MS | ES | YY | EXP2 | EXP1 | EXP0 |(EXP3)| XXXX | XXXX |
 +----+----+----+------+------+------+------+------+------+
 [Don't cares]
 +-- Implicit decimal point
 |
 67 64 | 63 0
 +-------------+--------------------------+
 | Mantissa 16 | Mantissa 15 - Mantissa 0 |
 +-------------+--------------------------+

See also:
 "data types"

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 16 of 93

Resource Help

General Information

USING STRING BUFFER INDIRECTION

When supplying a string (into a string requester), rather than typing in the
actual string, you may use "string buffer indirection". This means that if
the string that you want to use is already in one of ReSource's string
buffers (A-M), you can tell ReSource to use the string from one of those
buffers. This is done by typing an escape character (either type "\e" or
just press the escape key), followed by one of the letters A-M, representing
the buffer from which the string will be gathered. Or, if the string is to
come from the accumulator, two escape characters should be used.

For example, if you wanted to create a macro that searched for the string
"START+", but rather than simply overwrite the current search string, it
saved, and then restored it, the following macro would do this:

STRINGS/Get/Search string ;Get current search string
CURSOR/Normal search/Set search string "START+"
CURSOR/Normal search/Find next occurrence
CURSOR/Normal search/Set search string "\e\e" ;Restore search string!

USING SYMBOL BASES

Functions associated with the "SYMBOLS" gadget are used to create symbols.
There are literally hundreds of structures, with many symbols defined for
various offsets from these structures. Rather than use the actual value
of a particular offset, symbols should be used. When assembling, this
serves two purposes:

 1. It is easier to remember "_LVOOpenLibrary" and "_LVOOpen" than the
 equivalent values "-$228" and "-$1E".

 2. When a new operating system is released, you have only to reassemble
 with the appropriate include files for the new operating system
 release, and any changed offset values will be picked up immediately.

When disassembling, symbols give you information about what the original
author intended the code to do. Before using the "SYMBOLS" gadget to
select a function, you must first decide which symbol base should be used.
Examine the following code:

 MOVE.L (4),A6
 JSR (-$C6,A6)

The first line is getting a pointer to the "exec" library, and putting it
into the A6 register. The second line calls a library function, at an
address that is $C6 bytes lower in memory than the base of the exec library.
To find out the name of this library call, scroll so that the second line
becomes the current line, click on the "SYMBOLS" gadget and then select
"Library Offsets/Exec Library/All". The code will then become:

 MOVE.L (4),A6
 JSR (_LVOAllocMem,A6)

In this case, the symbol "_LVOAllocMem" has been created, replacing the
number "-$C6". When reassembled, the resulting code will be same whether you
use a symbol or the number.

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 17 of 93

Resource Help

Menu Functions

&H003C PROJECT/Open load file

ReSource will present the ASL file requester. When you either double-click
on a file name, select a file and press "return", or click on the "okay"
gadget, ReSource will attempt to load the file as an executable, or "load"
file. If there are any debug symbols in the executable, these will be
stored, and will become labels at the appropriate places in the file.
Relocation is performed where required.

If the file has overlays, ReSource will attempt to load the root hunk. Each
debug symbol encountered is attached to the appropriate byte in the file, and
for those that are nine characters long, and start with "lb", immediately
followed by 'A', 'B', 'C', 'L', or 'W', the data type at the appropriate byte
will be set to ASCII, Bytes, Code, Longwords, or Words, respectively.

Additionally, local labels, of the "1$" variety, and labels ending in "SUB"
are recognized as code, and labels ending in ".MSG" are recognized as ASCII.
Any BSS hunks or uninitialized data areas found are expanded fully. You may
hilite areas where relocation has been performed by selecting
"DISPLAY/Hiliting/Reloc32".

You are limited to files smaller than 16 Megabytes, and further limited by
how much memory you have. To disassemble a 100K file, you will require
approximately 850K of memory, of which at least 400K must be contiguous. If
the file has large BSS hunks, this will greatly increase the memory
requirements.

&H0190 PROJECT/Open binary file

Similar to "PROJECT/Open load file", except that no translation of the file
is performed; the file is read in "as-is". This allows you to see the loader
information in executables, object files, etc. You can also load in text
files, data base files, in fact any file whatsoever, memory permitting. If
you select "PROJECT/Open load file" for a non-executable file, the file will
be loaded as a binary image instead, therefore "PROJECT/Open binary file" is
not really required except when you wish to force an "as-is" load for an
executable file.

&H0048 PROJECT/Restore file

Useful only when the current buffer was loaded using
"PROJECT/Open binary file" or "PROJECT/Open load file".

This function will attempt to load a file, with the same name as the current
file, using the same function that loaded the current file originally. Do
not use this function if the current buffer was loaded from tracks, or
directly from memory.

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 18 of 93

Resource Help

Menu Functions

&H0276 PROJECT/Dismble memory

Disassembles a block of memory directly. You will be asked to supply a start
and end address for the memory region to be disassembled. The memory is NOT
copied to a separate buffer, it is disassembled "as-is", which means that if
you hold down the left mouse button, in some areas you can see the memory
being dynamically updated. It also means that you can modify memory
directly. Anywhere. For each address that you supply, if the number starts
with a "$", the number is assumed to be hexadecimal. If it starts with "%",
it is assumed to be a binary number. If neither, decimal is assumed. If you
wish to work on a COPY of a block of memory, to avoid modifying the original,
or perhaps because the original will not be around for long, disassemble the
memory directly, and save the data with the "PROJECT/Save .RS" function.
Then use "PROJECT/Open load file" to load the ".RS" file normally.

&H0273 PROJECT/Read tracks

You will be asked to supply the parameters for tracks to read. The first
parameter must be either "DF0:", "DF1:", "DF2:", or "DF3:" (lower case is
okay). This represents the drive that holds the disk to be read from. The
second parameter is the number of the cylinder to start reading from. The
third parameter is the number of the last cylinder to be read, plus one. For
example, if you wanted to read the first cylinder from the disk in DF0:, the
parameters would be "DF0: 0 1". The fourth parameter is optional, and
represents the number of extra sectors to read. For example, if you wished
to read only the very first sector from DF1:, the parameters would be "DF1: 0
0 1". If you wished to read the first sector from the directory track of
DF2:, the parameters would be "DF2: 40 40 1". The fifth parameter is also
optional, and it represents the sector offset, to start the read. For
example, if you wished to read sectors nine and ten on cylinder 79 of the
disk in DF3:, the parameters would be "DF3: 79 79 2 9".

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 19 of 93

Resource Help

Menu Functions

&H0299 PROJECT/O''lay binary image

This function prompts you for a filename. ReSource will attempt to open the
file, and read the contents, overlaying the current file, starting at the
cursor position. This is NOT the same as opening a file normally, as all
labels, symbols, comments, data types, etc., stay as they are. Only the
actual contents of the executable itself are overwritten.

For example, you may wish to pass on a ".RS" file to someone, but because the
program you have disassembled is copyrighted, you cannot legally distribute
the normal ".RS" file, as it contains the executable. By using this
function, and inputting a filename of "*" (asterisk), ReSource will
completely clear the executable within the current file. You may then save
to a ".RS" file, which may then be distributed, devoid of the executable. If
another person has previously purchased the program that you have
disassembled, they may load it into ReSource, and use
"SAVE/Save binary image/All", to save the executable to a file. They then
load the special ".RS" file which you created. Next, they then use "PROJECT/
O'lay binary image", supplying as a filename, the name of the file previously
saved with the "SAVE/Save binary image/All" function. This effectively puts
the executable back into the ".RS" file. The other save functions may then
be used, to save to a .asm file, for example.

Please make sure the executable section IS cleared before you share ".RS"
files that are disassemblies of copyrighted material. Failure to do this may
result in your meeting many new people - mostly lawyers.

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 20 of 93

Resource Help

Menu Functions

&H0306 PROJECT/Disassemble

This function does most of the work in converting "START+" references to
label references. It can also recognize many types of "jump tables",
especially those in programs created using any of the popular "C" compilers.
It can be used on most executables, but before using, you (the user) should
determine if a base register is being used to reference data and/or code. If
so, use one of the "SPECIAL FUNCTIONS/Convert (xx,An) EA's/" functions to do
the conversions, then go ahead and select the "PROJECT/Disassemble" function.
The following guide is applicable to most executables that require
disassembling:

 1. Check for base register addressing. Select the appropriate EA
 conversion function from the SPECIAL FUNCTIONS menu.

 2. If appropriate, execute a command language file.

 3. Select the "PROJECT/Disassemble" function.

 4. Move the cursor to the start of the file, and select the "CURSOR/
 Relative/Next uncertain D/T" function. This function asks ReSource to
 show you places in the file where it needs some help in determining what
 type of data (code/ASCII/bytes/words/longwords) is there. At each
 location, change the data type if required, and then *without
 scrolling*, select the "CURSOR/Relative/Next uncertain D/T" function
 again. This tells ReSource that it can now be certain that the data
 type there is correct. Keep doing this until you hit the end of the
 file.

 5. Select the "PROJECT/Disassemble" function again. If you changed anything
 in step 4 to code, this will convert more labels. Repeat steps 4 and 5
 until you no longer find any uncertain data types in step 4.

 6. Move the cursor to the start of the file, and use the
 "CURSOR/Relative/Next error line" function. ReSource will move the
 cursor to find places in the file that require attention. These may be
 unresolved "START+" references, odd address errors, bad references,
 unreferenced code/data, library calls that haven't yet had a symbol
 created for them, or instructions that are either illegal, or extremely
 unlikely to be used.

 7. The file is probably ready for reassembly, however you may first want to
 carefully examine the code, and create meaningful labels and symbols.
 Even though the "PROJECT/Disassemble" function may have been used before,
 perhaps several times for any particular file, after changing any other
 data type to "code", it may be useful to use it again. For example, there
 may be a large portion of code with only one entry point, which up until
 now has been shown as ASCII. After changing to code, the
 "PROJECT/Disassemble" function should be able to resolve ALL the "START+"
 references for the entire subroutine, and all the subroutines that it
 calls, and so on.

&H0045 PROJECT/Save .RS/Save

Use this function to save what you are currently working on, regardless of
how far you have gotten in disassembling it. Virtually everything is saved,
even your current position within the file. To re-open a ".rs" file, use the
"PROJECT/Open load file" function.

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 21 of 93

Resource Help

Menu Functions

&H0045 PROJECT/Save .RS/Save

&H036C PROJECT/Save .RS/Original
&H0370 PROJECT/Save .RS/Current dir
&H0368 PROJECT/Save .RS/Specify

You can set up the environment in ReSource to specify where files are to be
saved. There are 3 different sets of functions that you can use to specify
the behaviour of:

"PROJECT/Save .RS/Save"
"SAVE/Save binary image/All"
"SAVE/Save binary image/Partial"
"SAVE/Save .asm/All"
"SAVE/Save .asm/Partial"
"SAVE/Save executable/With Labels"
"SAVE/Save executable/No Labels"

1. Current dir
If enabled, the default path to save files to will be the same path as where
the file was loaded from. When the file requester is displayed, you will
only see the file name.

2. Original
If enabled, the default path to save files will be the current directory.
When the file requester is displayed, you will see the path and the file
name. If the file was loaded from the current directory, the behaviour will
be the same as for "Original".

3. Specify
You will be asked to supply a pathname, which will be used as the default
path to save files to in future. This pathname will be saved in the
"Auto-configuration" macro when you select "PROJECT/Save Configuration".

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 22 of 93

Resource Help

Menu Functions

&H0322 PROJECT/Save Configuration

Use to save the current state of ReSource's various options, menu settings,
contents of string buffers, etc. ReSource does this by creating macro #19,
and naming it "Auto-configuration", and then offering to save macros. If the
macros are saved to the file "S:RS.Macros", whenever you next run ReSource,
it will run the new "Auto-configuration" macro, thereby setting up the
various options to how they were when you used "Save config" last time.
Here is a complete list of what is restored when the Auto-configuration macro
is eventually executed at startup:

1. The checked/unchecked state of all menu items.
2. The state of the four case flipping functions (code,data,registers,size
 qualifiers)
3. All user-defined symbol bases will be loaded to the same places as before.
4. The "comments column" number.
5. The custom path for saving ".asm" files to.
6. The custom path for saving ".rs" files to.
7. The custom path for saving executables to.
8. The custom path for saving binary images to.
9. The current search string.
10. The current binary search parameters.
11. The contents of the accumulator, and buffers A-M inclusive.

At the end of the Auto-configuration macro, it executes macro #57 (the last
macro under the "MACROS 3" menu). If there is any other functions that you
would like executed at startup time, put them in macro #57.

&H0049 PROJECT/About

Get information about the version number, author, agents, and people that
helped in the development of ReSource.

&H0357 PROJECT/ -<HELP>-

The function that you are using right now!!
The "Help" function allows you to get information about ReSource's functions
quickly. There are various keys used inside the "Help" function. These are
hard-bound, they cannot be rebound the way normal functions can. They are:

Exit normal-ESC
Scroll down normal-down arrow
Scroll up normal-up arrow
Scroll to start of file alt-up arrow
Scroll to end of file alt-down arrow
Hilite word for hyper-help left and right arrows
Hyper-help for hilited word normal-return
Back out from hyper-help normal-backspace
Page down shift-down arrow
Page up shift-up arrow
More help alt-help
Next help screen alt-right arrow
Previous help screen alt-left arrow

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 23 of 93

Resource Help

Menu Functions

&H0008 PROJECT/Quit

Asks you for confirmation, then quits without saving. If this function is
used within an executing macro, it will NOT ask the operator for confirmation.

If any new macros have been defined, without being saved to a macro file,
this fact will be mentioned in the quit requester.

See "PROJECT/Quit NOW"

&H0325 PROJECT/Quit NOW

Quits immediately, with no questions asked.

&H001C DISPLAY/Hiliting/BSS hunks/ON

Data within BSS hunks and uninitialized data areas will be hilited. The
actual hiliting consists of light underlining of all opcodes.

&H001B DISPLAY/Hiliting/DATA hunks/ON

Everything within data hunks will be hilited. Data hunks often will contain
only data constants, but may also contain code. The actual hiliting consists
of light underlining of all opcodes.

&H001A DISPLAY/Hiliting/CODE hunks/ON

Everything within code hunks will be hilited. Code hunks often will contain
only code, but may also contain data constants. The actual hiliting consists
of light underlining of all opcodes.

&H005E DISPLAY/Hiliting/Chip load hunks/ON

Data within code or data hunks that MUST be loaded into chip memory (only)
will be hilited. Data falling into this category will usually be graphics or
sound data, to be accessed directly by the blitter, copper or DMA. The type
of hiliting used will be full hiliting of the opcode field.

&H005D DISPLAY/Hiliting/Fast load hunks/ON

Data within code or data hunks that MUST be loaded into fast memory (only)
will be hilited. The type of hiliting used will be full hiliting of the
opcode field.

&H0023 DISPLAY/Hiliting/Reloc32/ON

All "RELOC32" pointers are hilited. The actual hiliting consists of using
inverse video, for the characters that make up the reloc32 reference.

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 24 of 93

Resource Help

Menu Functions

&H0151 DISPLAY/Hiliting/Symbol scan/ON

Hilites lines that have been scanned. "Scanned" or "parsed" lines are those
that have been the target of either the
"LABELS/Create single/Label - fwd ref" or "LABELS/Create multiple/All"
functions, or those lines scrolled over while holding down the leftAmiga key,
as well as the LMB.

The type of hiliting in this case will be light underlining, of the first
whitespace area.

&H0152 DISPLAY/Hiliting/Data type uncertain/ON

For most labels that ReSource creates automatically, it is certain of the
data type that it assigns. Sometimes though, it cannot be 100% sure, and
this function will hilite all lines that fall into this category.

The type of hiliting in this case will be full hiliting of the first
whitespace area.

&H0153 DISPLAY/Hiliting/Data type known/ON

For most labels that ReSource creates automatically, it is certain of the
data type that it assigns. Sometimes though, it cannot be 100% sure.
This function will hilite those that ReSource was 100% sure of, and also
those lines where the user has specifically set the data type.

The maintenance of "data type known" information is very important in
ReSource. For example, if a label is created, and the data type at that
label is set to "ascii" by ReSource, and then at some later time, a line is
parsed, where there is another reference to the same location, but this time
ReSource decides that the data type there must be code, it will actually
change the data type, if "data type known" attribute bit has not been set at
that location, unless the "data type uncertain" bit is also set.

ReSource also uses the "data type known" bit to determine line starts. For
example, ascii is often displayed in strings of more than one byte long. In
determing how many bytes to display on one line, ReSource checks for bytes
that have the "data type known" bit set, and when it finds one, will start it
on a new line, even if it is set to "ascii" data type also.

The "data type known" bit can be cleared by selecting either the
"DISPLAY/Set data type/Unknown" or "LABELS/Remove single/All" function.
The type of hiliting used will be full hiliting of the first whitespace area
in the line.

&H0154 DISPLAY/Hiliting/Internally-produced refs/ON

Hilites label definitions where the label name itself was created by ReSource
("shop" labels), rather than defined by the user. This differs from the
'DISPLAY/Hiliting/"Shop" labels' function in that only the label definition
is hilited, not references to the label.

The type of hiliting in this case will be light underlining of the label
definitions.

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 25 of 93

Resource Help

Menu Functions

&H02B9 DISPLAY/Hiliting/Uninitialized data/ON

When selected, any uninitialized data areas will be hilited.

The type of hiliting used will be full hiliting in the second whitespace
area. This is the spaces or tab between the opcode and the first operand.

&H02CB DISPLAY/Hiliting/DCB override/ON

This function will hilite any areas that have been selected by "DISPLAY 2/DCB
override/Set". The type of hiliting used will be light underlining of the
first whitespace area.

&H02CD DISPLAY/Hiliting/Symbols/ON

This function will hilite all symbols. The type of hiliting used will be
heavy underlining of all symbols.

&H034E DISPLAY/Hiliting/"Shop" labels/ON

All labels that were originally created by ReSource ("shop" labels) will be
hilited. The type of hiliting used will be light underlining of each every
shop label, be they the label definition, or a reference to the label
definition.

&H034F DISPLAY/Hiliting/Custom labels/ON

All labels that were originally created by the user ("custom" labels) will be
hilited. The type of hiliting used will be light underlining of each every
custom label, be they the label definition, or a reference to the label
definition.

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 26 of 93

Resource Help

Menu Functions

&H000E DISPLAY/Set data type/Code
&H000B DISPLAY/Set data type/ASCII
&H0017 DISPLAY/Set data type/Bytes
&H0014 DISPLAY/Set data type/Words
&H0013 DISPLAY/Set data type/Longs
&H03BA DISPLAY/Set data type/Single
&H03BB DISPLAY/Set data type/Double
&H03BC DISPLAY/Set data type/Extended
&H03BD DISPLAY/Set data type/Packed

When you are certain of which type of data that you are looking at, select
from one of the sub-menu items: Code, ASCII, Bytes, Words, Longwords, and the
floating point types Single, Double, Extended and Packed.
Under certain conditions, ReSource will override the previously set data type.
These are detailed below:

1. Attempts to set the data type to ASCII or CODE in a BSS or uninitialized
 data area will instead set the data type to BYTES. Regardless of the
 setting of the attributes bits, data in a BSS hunk or in an uninitialized
 data area will *always* show as "ds.b", "ds.w" or "ds.l".

2. If a line is displayed such that a reloc32 longword will overlap to the
 next line, the data type at the start of that line is changed to bytes/
 words, effectively preventing the overlap. The floating point types
 will scale down in a similar manner.

If a data type of "code", "word", "longword" "single", "double", "extended"
or "packed" is selected at an odd address, a DisplayBeep() is generated.

If a label is defined for an uninitialized data or BSS area, and the data
type for the previous word was set to longword, ReSource will override the
previous data type in order to avoid hiding the label. This will also be
true for other combinations of data type sizes, such as when the previous
byte had its data type set to words. This means that you will not see any
hidden labels in a BSS or uninitialized data area.

Double, Extended and Packed data types behave in a slightly different manner
than other data types: They may not be assigned symbolic names, and must be
displayed in their native format--the numeric base may not be changed.

See also:
 "data types" and "numeric types"

&H03B3 DISPLAY/Set data type/Unknown

This function is used to remove a previously-set data type. This may occur
when you find a reference to somewhere, set the data type there and create a
label, only to discover later that the original reference was bogus. You may
then use "LABELS/Remove single/Label" to remove the label, and
"DISPLAY/Set data type/Unknown" to remove the data type setting. Actually,
you can do both of these at the same time, by using the
"LABELS/Remove single/All" function.

&H01A5 DISPLAY/Set Numeric base/Hexdecimal

Display numbers on current line as hex. See "numeric types".

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 27 of 93

Resource Help

Menu Functions

&H005C DISPLAY/Set Numeric base/Decimal

Display numbers on current line as decimal. See "numeric types".

&H002D DISPLAY/Set Numeric base/Binary

Display numbers on current line as binary. See "numeric types".

&H0022 DISPLAY/Set Numeric base/ASCII

Display numbers on current line as ASCII, if possible.
See "numeric types".

&H016A DISPLAY/Decimal conversion/None
&H016B DISPLAY/Decimal conversion/<10
&H016C DISPLAY/Decimal conversion/<16

By default, all numbers are shown in hexadecimal. You can have numbers less
than 16, or numbers less than 10, shown in decimal throughout the file, by
selecting one of the appropriate sub-items:

None: Do not do any decimal conversions.
10: Globally convert numbers 0 to 9 inclusive, to decimal.
16: Globally convert numbers 0 to 15 inclusive, to decimal.

&H0175 DISPLAY/Blank lines/Unconditional branches/ON
&H0176 DISPLAY/Blank lines/Conditional branches/ON
&H02B1 DISPLAY/Blank lines/DBRA instructions/ON
&H02B2 DISPLAY/Blank lines/DBcc instructions/ON
&H02CF DISPLAY/Blank lines/Entry points
&H02A4 DISPLAY/Blank lines/Returns/ON
&H02A3 DISPLAY/Blank lines/Calls/ON

To better define subroutines, and logical blocks of code, ReSource can insert
blank lines in the source code. You may select whether a blank line is
inserted after each conditional branch, unconditional branch, return, or
subroutine call. Additionally, selecting "DISPLAY/Blank lines/Entry points"
will create a blank line where data ends, and code starts.

You may select more than one, in which case a blank line will appear after
any line which falls into any of the selected categories. A line will never
be followed by more than one blank line, regardless of how many selected
categories it falls into.

&H01C5 DISPLAY/Cursor address/Relative

The cursor address will be shown in the title bar, as a hexadecimal offset
from the start of the file.

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 28 of 93

Resource Help

Menu Functions

&H01C6 DISPLAY/Cursor address/Absolute

The cursor address will be shown in the title bar, as a hexadecimal absolute
machine address. This allows you to quickly find the cursor position in
memory with other utilities, such as MetaScope, perhaps to carry out large
scale modifications.

&H01A6 DISPLAY/Titlebar info/Filename

Information is displayed in the title bar in several fields. From the left,
the first is the program name. The second is a decimal number, representing
the cursor position relative to the file size, and is a percentage. The
third field is a hexadecimal number, representing the cursor position, and
can be shown either as an offset from the start of the file, or as an
absolute memory location. The fourth field is the one that this function
relates to. By selecting this function, the current file name will be shown.
If user feedback is ON, informative messages will sometimes be shown in this
field also.

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 29 of 93

Resource Help

Menu Functions

&H01A7 DISPLAY/Titlebar info/Attributes

The last field of the title bar will display information representing the
current attributes of the cursor byte. This information is NOT required for
general program usage, and was originally included for debugging purposes
only, and left in to satisfy those that want to know how the attributes table
in ReSource works. The attributes table is four times the size of the
current file, plus 16 bytes. It is used internally as a large bitmap, to
store information about each and every byte in the current file. Because it
is four times the file size, 32 bits are available for each byte in the
current file. For each character in the string displayed, if lower case, the
bit that that character represents is clear, if upper case, the bit is set.

Going from the left, the bit definitions are:

Bit 31 S: Start of a line of code/data
Bit 30 B: Bss hunk

Bit 29 D: Data hunk

Bit 28 C: Code hunk

Bit 27 R: reloc32 area

Bit 26 F: First byte of reloc32 area

Bit 25 L: Label attached to this byte

Bit 24 S: Symbol attached to this byte

Bit 23 F: Full-line comment attached to this byte

Bit 22 E: End-of-line comment attached to this byte

Bit 21 P: Parsed previously (symbol scan)

Bit 20 I: Internally referenced

Bit 19 L: Low priority. The data type has been set, but can be overridden
 by internal routines. The data type can always be overridden by
 the user. This bit was generally set when ReSource had to decide
 on a data type to set for a byte, but when it did so, it wasn't
 really sure that it was correct.

Bit 18 A: Show numeric operands as ASCII if possible. Decimal conversion
 is on a higher priority than this bit.

Bit 17 B: Show numeric operands as Binary. Decimal conversion is on a
 higher priority than this bit.

Bit 16 D: Show numeric operands as Decimal if possible.

Bit 15 F: Data in this hunk is to be loaded into FAST memory only.

Bit 14 C: Data in this hunk is to be loaded into CHIP memory only.

 : [Next 4 bits are reserved for future use]

Bit 9 U: User should check the data type that has been set, as ReSource
 wasn't really sure that it chose the correct one. Use

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 30 of 93

Resource Help

Menu Functions

&H01A7 DISPLAY/Titlebar info/Attributes

 "CURSOR/Relative/Next uncertain D/T" to find the next occurrence.
 If such a line is already the current line when you use that
 function, it will clear this bit.

Bit 8 H: High priority. The data type has been set either by the user,
 or by ReSource when it was quite certain that it set the
 data type correctly. This does not mean that it cannot make
 mistakes, it simply means that if some operation attempts to set
 the data type for this byte, it will NOT override the currently
 set data type. This will not ever stop the user from redefining
 the data type, however.

Bit 7 C: This line is code.

Bits 6/5/4/3 dddd: Data type is unknown (usually defaults to code)
 dddD: Data type is single
 ddDd: Data type is bytes
 ddDD: Data type is double
 dDdd: Data type is words
 dDdD: Data type is extended
 dDDd: Data type is longwords
 dDDD: Data type is packed
 Dddd: Data type is bytes, within a BSS hunk or
 uninitialized data area.
 DddD: Data type is ASCII.
 DdDd: Data type is single, within a BSS hunk or
 uninitialized data area.
 DdDD: Data type is double, within a BSS hunk or
 uninitialized data area.
 DDdd: Data type is extended, within a BSS hunk or
 uninitialized data area.
 DDdD: Data type is packed, within a BSS hunk or
 uninitialized data area.
 DDDd: Data type is words, within a BSS hunk or
 uninitialized data area.
 DDDD: Data type is longwords, within a BSS hunk or
 uninitialized data area.

Bit 2 S: Start of a new section.

&H0246 DISPLAY/Titlebar info/Accumulator

The third field of the title bar will display information representing the
contents of the ACCUMULATOR. This is a 240 byte buffer, used as a central
number and string processor, which will find most of its uses within macros.

Only the first 30 characters or so can be shown in the title bar. However,
often the string will not be longer than that anyway. For more information
on the accumulator, see the functions within the "STRINGS" menu.

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 31 of 93

Resource Help

Menu Functions

&H03B2 DISPLAY/Titlebar info/Function names

The fourth field in the titlebar will display the name of the last-executed
function. A special case is while executing a macro, with the execution speed
set to "Wait on mouse". In this case, the *next* function to be executed
will be displayed in the titlebar.

&H0195 DISPLAY/Wrap/ON
&H0196 DISPLAY/Wrap/OFF

With wrap on, any lines longer than the current display width will be shown
on several lines. Otherwise, any lines longer than the current display width
will be truncated.

&H02BC DISPLAY/Block-fill/Set start
&H02BD DISPLAY/Block-fill/Set end
&H0156 DISPLAY/Block-fill/Fill

To use the "Block fill" function, the start and end addresses must be
specified by selecting "DISPLAY/Block fill/Set start" and "DISPLAY/Block
fill/Set end" at the appropriate locations in the file. The block-fill start
and end addresses will default to the actual start and end of the file.

Selecting "DISPLAY/Block-fill/Fill will copy the data type attributes of the
first byte (as defined by "Set start", from the start location up to, but not
including, the end location.

&H0024 DISPLAY/Set Counter
&H0025 DISPLAY/Reset Counter

In ReSource's title bar, the offset from the start of the file is normally
shown near the left edge. Sometimes, you may wish to know offsets from
something other than the start of the file. To do this, move to where you
wish to calculate offsets relative from, and select "DISPLAY/Set Counter".
To see normal offsets again, select "DISPLAY/Reset Counter".

&H01A2 DISPLAY/Flip case/CODE

If code is currently being displayed using upper case, it will instead be
shown in lower case, and vice versa. Note that searches are case sensitive.

&H01A3 DISPLAY/Flip case/data

If data is currently being displayed using upper case, it will instead be
shown in lower case, and vice versa.

&H0314 DISPLAY/Flip case/REGISTERS

If registers are currently being displayed using upper case, they will be
instead shown in lower case, and vice versa.

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 32 of 93

Resource Help

Menu Functions

&H0366 DISPLAY/Flip case/SIZE SPECIFIERS

If size qualifiers are currently being displayed using upper case, they will
be instead shown in lower case, and vice versa.

&H02C2 DISPLAY 2/DCB override/Set
&H02C3 DISPLAY 2/DCB override/Clear

These functions set or clear an attribute bit for the current line
determining whether the DCB directive will be used on this line if there is
suitable data. This bit works in conjunction with the global DCB option (see
"OPTIONS/Show.../DCB statements") to comprise an exclusive-OR function: If
global DCB's are ON, this bit will turn them off locally. Conversely, if
global DCB's are set to OFF, this bit will enable them locally.

&H02C4 DISPLAY 2/Mult constants override/Set
&H02C5 DISPLAY 2/Mult constants override/Clear

These functions set or clear an attribute bit for the current line
determining whether multiple constants per line will be displayed, should
there be suitable data. This bit works in conjuction with the global
multiple constants option (see "OPTIONS/Show.../Multiple constants" to
comprise an exclusive-OR function: If global multiple constants are ON, this
bit will turn them off locally. Conversely, if multiple constants are set to
OFF, this bit will enable them locally.

&H02C2 DISPLAY 2/DCB override/Set
&H02C3 DISPLAY 2/DCB override/Clear

These functions set or clear an attribute bit for the current line
determining whether the DCB directive will be used on this line if there is
suitable data. This bit works in conjunction with the global DCB option (see
"OPTIONS/Show.../DCB statements") to comprise an exclusive-OR function: If
global DCB's are ON, this bit will turn them off locally. Conversely, if
global DCB's are set to OFF, this bit will enable them locally.

&H0384 DISPLAY 2/Set comments column

You will be asked to supply a number, that will be used as the starting
column for all end-of-line comments. If a line finishes after the specified
comment starting column, only one space will be used before the "" is
displayed.

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 33 of 93

Resource Help

Menu Functions

&H0373 SYMBOLS/Custom bases/Use (1) &H0376 SYMBOLS/Custom bases/Use (2)
&H0374 SYMBOLS/Custom bases/Add (1) &H0377 SYMBOLS/Custom bases/Add (2)
&H0375 SYMBOLS/Custom bases/Clear (1) &H0378 SYMBOLS/Custom bases/Clear (2)

The custom symbol bases give you a way of creating symbol bases from within
ReSource itself. The idea here is that you firstly select and clear one of
the custom symbol bases, and select "use" whenever you wish to create a
symbol using that custom symbol base. The first time you select "use",
ReSource will ask you for the name of the symbol to use. On subsequent
symbols, ReSource will compare the symbol value, to those for the symbols
that have already been added to this custom symbol base. If there is a
match, you will not have to type in the symbol name again, instead
ReSource will create the symbol name using the same name as was used last
time. When you use "add", the currently selected symbol and its symbol value
will be added to the base. If there is already a symbol in the base with the
same symbol value, it will be removed, and replaced by this symbol and symbol
value. When you select "clear", it clears all symbols from that particular
custom symbol base.

&H0050 SYMBOLS/Select field/First (default)
&H0051 SYMBOLS/Select field/Second
&H0312 SYMBOLS/Select field/Third
&H0313 SYMBOLS/Select field/Fourth

Examine the following line of code:

 MOVE.L #-$0228,$0022(A6)

If you wished to create a symbol for the second number on this line, "$0022",
you should first select "Second". The setting of "Select field" will
go back to "First" with virtually any function you use, therefore when
creating a symbol for the second field in a line of code, use
"SYMBOLS 1/Select/Second" only just prior to actually creating the symbol.
"Third" and "Fourth" fields may be necessary when disassembling 68020
effective addresses.

&H0270 SYMBOLS/Object/Accumulator
&H0268 SYMBOLS/Object/Cursor

When creating symbols using ReSource's inbuilt symbol bases, the number, used
to find the string will come from the cursor line. You can instead have
ReSource get the number from the accumulator, by selecting "Accumulator". In
this case, the output string will be placed back into the accumulator. To
set it back, select "Cursor".

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 34 of 93

Resource Help

Menu Functions

&H002C CURSOR/Remember

"Push" the current cursor location on ReSource's location stack.
Other functions that call this function are:

"CURSOR/Relative/Next hilite"
"CURSOR/Relative/Next error line"
"CURSOR/Relative/Next D/T change"
"CURSOR/Relative/Previous D/T change"
"CURSOR/Absolute/End of file"
"CURSOR/Absolute/Start of file"
"CURSOR/Absolute/Forward reference"
"CURSOR/Absolute/Second forward reference"
"CURSOR/Absolute/Backward reference"
"CURSOR/Normal search/Set search string"
"CURSOR/Pattern search/Set search pattern"
"CURSOR/Buffer search/Set search string"
"CURSOR/Search/Search from start of file"
"CURSOR/Search/Search from end of file"

To "pop" a cursor location, you use the function:
"CURSOR/Absolute/Previous location"

The stack is cleared when you load a new file, or when you select:
"CURSOR/Clear loc stack"

The stack is NOT stored within ".RS" files.

&H005F CURSOR/Clear Loc stack

Clear the cursor location stack. See "CURSOR/Remember"

&H0011 CURSOR/Relative/Next byte

The cursor location is incremented. If at the last location within the
current file, a macro "fail" will result.

&H0012 CURSOR/Relative/Previous byte

The cursor location is decremented. If at the first location within the
current file, a macro "fail" will result.

&H000A CURSOR/Relative/Next line

Scroll forward one line of code/data. If at the last line of code/data in
the file already, a macro "fail" will result. The speed at which this scroll
is done is set by the "CURSOR/Scrolling speed" settings.

&H0009 CURSOR/Relative/Previous line

Scroll backwards one line of code/data. If at the first line of code/data in
the file already, a macro "fail" will result. The speed at which this scroll
is done is set by the "CURSOR/Scrolling speed" settings.

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 35 of 93

Resource Help

Menu Functions

&H0186 CURSOR/Relative/Next label

Move cursor to the next location that has a label attached to it. If one
cannot be found, a macro "fail" will result.

&H0187 CURSOR/Relative/Previous label

Move cursor to the previous location that has a label attached to it. If one
cannot be found, the start of the file will become the new cursor position.

&H019E CURSOR/Relative/Next symbol
&H019F CURSOR/Relative/Previous symbol

Move cursor to the next/previous location that has a symbol attached to it.
If one cannot be found, a macro "fail" will result. Note that this location
may be in the middle of a line of code. Where the actual operand is stored
will become the new cursor position.

In a macro, if you wish to find the start of a line that contains a symbol,
use the following sequence after you have found the symbol:

CURSOR/Relative/Next byte
CURSOR/Relative/Previous line

&H0197 CURSOR/Relative/Next Section

Move cursor to the start of the next section (hunk). If this is the last
section in the file, a macro "fail" will result.

&H0198 CURSOR/Relative/Previous Section

Move cursor to the start of this section (hunk). If already at the start of
a section, move to the start of the previous section. If already at the
start of the first section, a "macro fail" will result.

&H01A0 CURSOR/Relative/Next reloc32

Move cursor to the start of the next relocated longword. If one cannot be
found, a macro "fail" will result. Note that this may be in the middle of a
line of code.

&H01A1 CURSOR/Relative/Previous reloc32

Move cursor to the start of the previous relocated longword. Note that this
may be in the middle of a line of code. If one cannot be found, the start of
the file will become the new cursor position.

&H000D CURSOR/Relative/Next page

Moves cursor forwards approximately three quarters of a screenful.

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 36 of 93

Resource Help

Menu Functions

&H000C CURSOR/Relative/Previous page

Moves cursor backwards approximately three quarters of a screenful.

&H00F9 CURSOR/Relative/Skip forward

Move cursor backward approximately 4K.

&H00FA CURSOR/Relative/Skip Backward

Move cursor forward approximately 4K.

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 37 of 93

Resource Help

Menu Functions

&H02F6 CURSOR/Relative/Next error line

The purpose of the "CURSOR/Relative/Next error line" function is to find
areas that MAY not be disassembled properly. There are currently 10 types of
"errors" that can be detected. Each of these can be independantly enabled or
disabled (via the "OPTIONS/Error detection/" submenu items):

1. Code terminate : This is where code finishes, and data starts, where the
last line of code was NOT one of the "normal" code terminators, such as
"RTS", "RTE", "BRA", "JMP", etc.

2. Missing label : The code or data line immediately following a valid code
terminating line (such as "RTS", "RTE", "BRA", "JMP" etc) should have a label.

3. Bad alignment : Word or longword data lines should not start on an odd
address.

4. Code reference : An instruction that normally references code, is
referencing data instead. For example, what a "DBRA" instruction references
must NEVER be data.

5. Data reference : An instruction that normally references data is
referencing code instead. For example, what a "CLR" instruction references
must NEVER be code.

6. START+ : There should be no "START+" references left in the disassembly
at save .asm time.

7. AFLINE : Any lines producing an "AFLINE" instruction are detected.

8. Library calls : Any JSR or JMP instruction with an effective address of
the "Address register indirect with displacement" type, where the address
register is A6, and the offset is an even multiple of minus 6, is detected.
These are usually calls to system libraries.

9. Illegal code : Illegal opcodes, and extremely unusual opcodes. "Unusual"
opcodes include the "TAS" instruction, branches with an odd offset, ADDQ and
SUBQ with the stack pointer as the destination, and an odd number for the
source, using the "EXG" for exchanging a register with itself, using "LINK"
or "UNLK" with the stack pointer, etc.

10. Sym/EQU values : Whenever a symbol is created, the symbol and symbol
value are stored in the "equates table". If you have somehow managed to
give two different values the same symbol name, any lines containing the
symbol with the symbol value that differs from that stored in the equates
table, will be detected.

The purpose of the "CURSOR/Relative/Next error line" function is to find
areas that MAY not be disassembled properly. There will be cases where the
code/data has been disassembled correctly, but will still get picked up.

Note that when a "Calculate .asm size" or "Save .asm" is performed, lines
that are picked up by the above function are pushed onto the cursor location
stack. If "error comments" are enabled, you will also get some extra full-
line comments in your source code, complaining about the errors that were
detected.

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 38 of 93

Resource Help

Menu Functions

&H003D CURSOR/Relative/Next unparsed code

Move cursor forward to the next location that satisfies both of the following
conditions:

 1. The data type has been set to CODE
 2. This location has NOT been scanned for forward references previously.

This function is normally used in conjuction with the
"LABELS/Create multiple/All" function.

&H0001 CURSOR/Relative/Next D/T change

Moves cursor forward to the next change of data type. For example, if the
cursor line is currently displaying code, the cursor will move forward to the
next line of bytes/words/longwords/ascii.

&H0002 CURSOR/Relative/Prev D/T Change

Moves cursor backward to the first encountered change of data type. For
example, if the cursor line is currently displaying code, the cursor will
move backward to a line of bytes/words/longwords/ascii.

&H0044 CURSOR/Relative/Next uncertain D/T

Move cursor forward to the next location that has the "Uncertain" bit set in
the attribute table. This bit indicates that ReSource really wasn't sure of
the data type of this byte. It is a good idea to check these locations after
using the "PROJECT/Disassemble" function.

&H0046 CURSOR/Relative/Next backward ref

Once you have used the "CURSOR/Absolute/Backward reference" function, you
can use this function to get to other backward references.

&H02CE CURSOR/Relative/Next hilite

Move cursor forward to the next line which has any form of hiliting. By
changing the type of hiliting, in the DISPLAY/Hiliting" menu, you can tailor
the search for various attribute types to your own needs.

&H0016 CURSOR/Absolute/End of file

Move cursor to the start of the last line of the file. Be aware that there
may be a delay, while ReSource properly determines the start of the last line.

&H0015 CURSOR/Absolute/Start of file

Move cursor to the start of the file.

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 39 of 93

Resource Help

Menu Functions

&H0040 CURSOR/Absolute/Forward reference

If there is a reference to a position within the current file and within the
current line of code, move cursor to the location being referenced. If there
are two forward references within the current line, the first is used. An
exception to this is if you have selected any of the "SYMBOLS 1/Select field/:"
functions other than "First".

It is also possible to forward-reference from symbols which themselves
reference labels, i.e.:

 ADD.W D0,D0
 MOVE.W JumpBase(PC,D0.W),D0
 JMP JumpBase(PC,D0.W)

JumpBase DW FirstOffset-JumpBase
 DW SecondOffset-JumpBase
 DW ThirdOffset-JumpBase
 DW FourthOffset-JumpBase
FirstOffset ...

Any of the symbols on the "DW" lines, are each defined as the distance
between two labels. Each of the symbols on these lines is evaluated by
subtracting the offset of "JumpBase" from "FirstOffset", or "SecondOffset",
etc.

&H0041 CURSOR/Absolute/Second forward reference

Similar to "CURSOR/Absolute/Forward reference", except that the second
reference is selected, rather than the first, as default.

&H0047 CURSOR/Absolute/Backward reference

Starting from the start of the file, search for references to the cursor
location. If there are several references, you can use
"CURSOR/Relative/Next backward reference" to get to successive references.

&H003F CURSOR/Absolute/Previous location

"Pop" the cursor location from the top of the cursor location stack. If the
stack is empty, a macro "fail" will result.

&H02EF CURSOR/Absolute/Swap W/Previous

Swaps the cursor location with the one on the top of the cursor location
stack.

&H01AD CURSOR/Absolute/Specify offset

You will be asked to supply an offset representing how far from the start of
the file, the cursor location should be. The number may be specified in
hexadecimal, decimal, or binary. If hexadecimal, the string must start with
"$", if binary, it must start with "%".

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 40 of 93

Resource Help

Menu Functions

&H01AE CURSOR/Absolute/Specify label

You will be asked to supply the name of a label. If the label is used within
the current file, its location will become the new cursor location. Note
that this may be in the middle of a line of code. If there is more than one
label with the name that you supply, the first label bearing that name will
be used. See "CURSOR/Label search/Find next occurrence".

&H01BC CURSOR/Absolute/Specify symbol

You will be asked to supply the name of a symbol. If the symbol is used
within the current file, its location will become the new cursor location.

Note that this may be in the middle of a line of code. Also note that if
there is more than one symbol of that name, ReSource will pick one closest to
the start of the file. See "CURSOR/Symbol search/Find next occurrence".

&H01AF CURSOR/Absolute/Specify percentage

You will be asked to supply a decimal percentage of the current file, where
the cursor will be positioned. In this case 0 is the beginning of the file
and 99 is the end. The actual positioning will not be exact. It will
generally be placed a little before the required percentage.

&H01B2 CURSOR/Copy/Clip #1 &H01B5 CURSOR/Paste/Clip #1
&H01B3 CURSOR/Copy/Clip #2 &H01B6 CURSOR/Paste/Clip #2
&H01B4 CURSOR/Copy/Clip #3 &H01B7 CURSOR/Paste/Clip #3
 &H01B8 CURSOR/Swap/Clip #1
 &H01B9 CURSOR/Swap/Clip #2
 &H01BA CURSOR/Swap/Clip #3

ReSource has 3 internal cursor "clipboards". You can copy a cursor location
to any of these, and then later "paste" one of these locations, which in
effect moves the cursor to where it was when you used the "copy" function.

Also, you can swap cursor locations, between the current, and a stored cursor
location. The contents of these cursor "clipboards" are cleared when you
load a new file.

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 41 of 93

Resource Help

Menu Functions

&H003A CURSOR/Scrolling speed/Very fast
&H0039 CURSOR/Scrolling speed/Fast
&H0038 CURSOR/Scrolling speed/Normal
&H0037 CURSOR/Scrolling speed/Slow
&H0036 CURSOR/Scrolling speed/Very slow

Whenever you use either "CURSOR/Relative/Next line" or
"CURSOR/Relative/Previous line" functions, the display will scroll one text
line, N pixels at a time:

 Scrolling Lines
 Speed Scrolled Notes
 --------- -------- -----
 Very fast 8 Exceptionally fast scrolling, good for scanning
 through a file.

 Fast 4 Reasonably fast scrolling, allows scanning,
 but difficult to read.

 Normal 2 Reasonably smooth scrolling, allowing you to
 read text fairly easily WHILE it is scrolling.

 Slow 1 Extremely smooth scrolling, allowing you to
 easily read text WHILE it is scrolling.

 Very Slow 1 Exceptionally smooth scrolling, with a delay,
 excellent for slowly browsing through a file.

Note that by using the mouse to scroll, you can select any of the above
mentioned scrolling rates.

&H001E LABELS/Create single/End-of-line comment

You will be asked to supply a string of less than 240 characters, which will
become a comment attached to the end of the cursor line. Only one end-of-
line comment is allowed per line; if you create one on a line that has
already got one, it will replace the old comment.

&H001F LABELS/Create single/Full-line comment

You will be asked to supply a string of less than 240 characters, which will
become a comment to be attached to the start of the cursor line. Multiple
full-line comments are allowed, and successive comments will be displayed
AFTER previously defined full-line comments. Normally, full-line comments
will be displayed starting with a semicolon (";"). However, if you start the
string with a semicolon, the logic is reversed, and it becomes an extra line
of code/data.

Thus, you can insert extra lines of code/data, before saving the source code
to a text file. By creating a label that starts with a semicolon for a given
line, when that code is assembled, that line of code/data is effectively
treated as a comment only, therefore you can both insert and effectively
remove code/data using ReSource, during the disassembly process.

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 42 of 93

Resource Help

Menu Functions

&H001D LABELS/Create single/Label

You will be asked to supply a string of less than 240 characters, which will
become a label to be attached to the cursor line. Duplicate labels are NOT
allowed, unless they start with a semicolon (";"), or an asterisk ("*").

Creating a label that starts with "*" or ";" effectively makes the rest of
the line a comment. To safely create unique labels during macros, use the
"STRINGS/Define/Acm", and then the "STRINGS/Put/Label" functions. String
indirection is supported in labels, symbols and comments.

When creating local labels, the uniqueness check is different to that done
for normal labels. The scope of local labels (and hence the scope of the
duplicate checking) is limited to between the most previous, and next, normal
label. ReSource supports local labels of the "1$" type, and also user-
friendly local labels as used in Macro68 (".loop", ".strcpy" etc).

&H0034 LABELS/Create single/Label - fwd ref

The current line of code will be searched for references to positions within
the current file. If any are found, ReSource will make a decision on which
type of data is at the position referenced. It will then set the
data type (unless it has already been set), and create a label at that offset
(unless a label has already been defined for that location). This new label
will be immediately used for all references to that location, which of course
includes the reference within the current line. If there are no references,
or there is a reference, but it is outside of the range of the current file,
then this function will do nothing. Normally, this function will only be
used within macros, as the "PROJECT/Disassemble" normally will create all
necessary labels.

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 43 of 93

Resource Help

Menu Functions

&H0006 LABELS/Edit single/Symbol

You will be asked to supply a string, which will replace one of the numbers
on the current line. A symbol may be created for the first, second, third of
fourth number on the current line. To select which one, you must first
select one of the following:

"SYMBOLS 1/Select field/First (default)"
"SYMBOLS 1/Select field/Second"
"SYMBOLS 1/Select field/Third"
"SYMBOLS 1/Select field/Fourth"

As noted above, the selection defaults to the first number.
For example, if you supplied the string "MyColdStartData", the following line:

 MOVE.L D0,(4,A0)

would become:

 MOVE.L D0,(MyColdStartData,A0)

If there are no numbers in the current line, a macro "fail" will result.
If the user creates a symbol which is currently also defined as a label, a
DisplayBeep() will be generated.

If an attempt is made to create a symbol, using the same name as a previously
defined symbol, but for a different symbol value, the symbol creation will
fail, and a DisplayBeep() will be generated.

See "OPTIONS/Allow.../EQUate value checks

&H0043 LABELS/Edit single/End-of-line comment

You will be asked to supply a string of less than 240 characters, which will
become a comment to be attached to the end of the cursor line. Only one end-
of-line comment is allowed per line; if you create one on a line that has
already got one, it will replace the old comment. Selecting "Edit" rather
than "Create" end-of-line comment will allow place the existing comment in
the string requester.

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 44 of 93

Resource Help

Menu Functions

&H0042 LABELS/Edit single/Full-line comment

You will be asked to supply a string of less than 240 characters, which will
become a comment to be attached to the start of the cursor line, but after
any existing full-line comments. Multiple full-line comments are allowed,
and successive comments will be displayed AFTER previously defined full-line
comments.

Normally, full-line comments will be displayed starting with a semicolon
(";"). However, if you start the string with a semicolon, the logic is
reversed, and it becomes an extra line of code/data. Thus, you can insert
extra lines of code/data, even before saving the source code to a text file.
By creating a label that starts with a semicolon for a given line, when that
code is assembled, that line of code/data is effectively treated as a comment
only, therefore you can both insert and effectively remove code/data using
ReSource, during the disassembly process.

When "Edit" is selected rather than "Create" full-line comment, the first
existing full-line comment is replaced with the one that you supply. If you
need to edit a full-line comment other than the first one, use the
"LABELS/Edit single/Rotate F/L comments" function first.

&H003E LABELS/Edit single/Label

Similar to the "LABELS/Create single/Label" function, except that if there is
already a label/symbol/comment defined, you will have the chance to edit that
string, rather than type the entire new string into the requester.

Like all requests for a string, you can use indirection, so that ReSource
gets the string from either the accumulator, or from one the buffers A-M.

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 45 of 93

Resource Help

Menu Functions

&H0359 LABELS/Create single/Symbol
&H0007 LABELS/Edit single/Symbol - dest

You will be asked to supply a string, which will replace one of the numbers
on the current line. A symbol may be created for the first, second, third of
fourth number on the current line. To select which one, you must first
select one of the following:

"SYMBOLS 1/Select field/First (default)"
"SYMBOLS 1/Select field/Second"
"SYMBOLS 1/Select field/Third"
"SYMBOLS 1/Select field/Fourth"

As noted above, the selection defaults to the first number.
For example, if you supplied the string "MyColdStartData", the following line:

 MOVE.L D0,(4,A0)

would become:

 MOVE.L D0,(MyColdStartData,A0)

If there are no numbers in the current line, a macro "fail" will result.
If the user creates a symbol which is currently also defined as a label, a
DisplayBeep() will be generated.

If an attempt is made to create a symbol, using the same name as a previously
defined symbol, but for a different symbol value, the symbol creation will
fail, and a DisplayBeep() will be generated.

See "OPTIONS/Allow.../EQUate value checks

&H0358 LABELS/Edit single/Rotate F/L comments

Rotate the order of the full-line comments on the current line. This may be
required when you wish to edit the second or subsequent full-line comment on
a line.

&H0184 LABELS/Replace single/Label

Create a "shop" label at the cursor position. A "shop" label is one that is
9 characters long, begins with "lb", has the data type immediately following,
and ends with the code offset. It may also be of some other length, and end
with ".MSG".

The "data type known" attribute will be set also.

&H0005 LABELS/Remove single/Label

Removes the label from the current line. This does *no* changes of data
type. See "DISPLAY/Set data type/Unknown"

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 46 of 93

Resource Help

Menu Functions

&H0155 LABELS/Remove single/Symbol

Removes a symbol from the current line. Use "SYMBOLS 1/Select field/:" to
select which symbol to remove.

&H037A LABELS/Remove single/EQUate

You will be asked for the name of a symbol. If there is an entry for that
symbol in the equates table, it will be removed.

&H02F5 LABELS/Remove single/Symbol & EQUate

Removes the symbol from the current selected field, as well as the equate
table entry for that symbol, should there be one.

&H0004 LABELS/Remove single/End-of-line comment

Removes the end-of-line comment from the current line.

&H0003 LABELS/Remove single/Full-line comment

Removes the first full-line comment attached to the current line.

See "LABELS/Edit single/Rotate comments"

&H000F LABELS/Remove single/All

Removes any labels, symbols, and comments from the current line, and then
sets the data type to "unknown". This is useful when a bogus reference was
made, as when ReSource (or you) thought code was being scanned, and it was
actually data or ASCII.

&H0029 LABELS/Create multiple/Reloc32 only

For each reloc32 pointer within the current file, determine and set the data
type being referenced, and create a label at that location. This function
will be called automatically whenever you load a load file that has at least
one reloc32 pointer, unless you override this option by selecting
"OPTIONS/Allow../Auto labels/OFF".

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 47 of 93

Resource Help

Menu Functions

&H003B LABELS/Create multiple/All

This function is used internally in the "PROJECT/Disassemble" function. It
remains accessible for users that want more control over the disassembly
process.

Starting at the current line, the "LABELS/Create single/Label - fwd ref"
function is executed, and if ReSource thinks that there was valid code, the
"CURSOR/Relative/Next line" function is executed, and the entire function
loops, otherwise exits.

Care must be taken when ReSource finishes parsing a section of code to ensure
that the next section selected is really code. Otherwise, there is a chance
that what ReSource thinks is valid code is really ASCII, and invalid labels
will be created. The best way to accomplish this is to select
"CURSOR/Relative/Next unparsed code" before selecting this function again.
When creating "shop" ASCII labels, if no valid text can be found to use in
the label name, instead of creating a label starting with "lbA", ReSource
creates the label "ascii.MSG", or "ascii.MSG0", or "ascii.MSG1", etc.

References to the START+$FFFFFFFC and START+$FFFFFFF8 are shown as
"ProgStart-4" and "ProgStart-8" respectively. If the label "ProgStart" is
not defined anywhere, it will be displayed as a label attached to the first
byte of the current file. You can still have some other label attached to
the start of the file.

&H03B6 MACROS 1/End macro

Use this function to end the creation of a macro. Pressing rightAmiga-A
(abort) will also end a macro.

&H0203 MACROS 2/Execute/(rename MACROS 2)

You will be asked to supply a string, of less than 24 bytes, which will
be displayed at the top of the "MACROS 1/Execute/" and "MACROS 1/Create/"
submenu items.

&H0201 MACROS 1/Execute/(rename MACROS 1)

You will be asked to supply a string, of less than 24 bytes, which will
be displayed at the top of the "MACROS 2/Execute/" and "MACROS 2/Create/"
submenu items.

&H0326 MACROS 3/Execute/(rename MACROS 3)

You will be asked to supply a string, of less than 24 bytes, which will
be displayed at the top of the "MACROS 3/Execute/" and "MACROS 3/Create/"
submenu items.

&H016D MACROS 1/Load macros

Asks you to select a file, which will be loaded as a ReSource macro file. This
normally done automatically at startup, loading the "S:RS.Macros" file.

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 48 of 93

Resource Help

Menu Functions

&H016E MACROS 1/Save all macros

Asks you to select a file, which will be used to save all currently defined
macros to. This function is called within the "PROJECT/Save configuration"
function. Normally, you will use the "S:RS.Macros" file, as ReSource will
always load this file during startup.

&H035A MACROS 1/Execution speed/Fastest
&H0200 MACROS 1/Execution speed/Very fast
&H019B MACROS 1/Execution speed/Fast
&H019C MACROS 1/Execution speed/Slow
&H01A4 MACROS 1/Execution speed/Very slow
&H019D MACROS 1/Execution speed/Wait on mouse

The "MACROS 1/Execution speed/:" functions allow you to control the speed at
which macros will be executed. Normally, you will probably want macros to
execute as fast as possible, however if you require more feedback as to what
exactly the macro is doing, you may select a slower speed. In particular,
the "Wait on mouse" selection allows you to "single step" a macro, and if you
also have the "DISPLAY/Titlebar info/Function names" function selected,
you will see the name of the function that will be executed next, in the
titlebar. When you click the LMB, that function will execute, and the
titlebar will again display the name of the next function to execute.

The "Fastest" selection will disable all types of output during macro
execution, including the updating of the titlebar. If "Very fast" is
selected, only the titlebar will be updated, the rest of the screen will not
be. This normally represents a 5% difference in macro execution speed.

Selecting "Fast" will allow screen updates. Selecting "Slow" will give a
short delay after each screen update. Selecting "Very slow" will give a
more substantial delay after each screen update.

&H0220 MACROS 1/Commentary/Full
&H0221 MACROS 1/Commentary/Heavy
&H0222 MACROS 1/Commentary/Normal
&H0223 MACROS 1/Commentary/Light
&H0224 MACROS 1/Commentary/None

Sets the commentary level in macros.

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 49 of 93

Resource Help

Menu Functions

&H0210 MACROS 1/Directives/Start conditional
&H0211 MACROS 1/Directives/End conditional

While creating a macro, you may wish to use conditional execution of parts of
the macro. Whenever a function is executed that generates a "macro fail",
the macro processor searches forward in the macro for and "end conditional".

If it does not find one, the macro will exit, ignoring all of the functions
that were skipped over while searching for the "end conditional".
If, while searching for an "end conditional", a "start conditional" is found,
the macro processor for searches for the matching "end conditional" for the
just-found "start conditional", and then continues searching for the original
"end conditional". In short, you may nest conditionals by placing the "start
conditional" and "end conditional"s at the appropriate places in a macro.
Example:

The following macro will perform the equivalent of:
"If the word "MOVE" is found, and there is a label on that line, parse the
line, else create a shop label, else go to the start of the file":

CURSOR/Normal search/Set search string "MOVE"
MACROS 1/Directives/Start conditional
CURSOR/Normal search/Find next occurrence
MACROS 1/Directives/Start conditional
STRINGS/Get/Label
LABELS/Create single/Label - fwd ref
MACROS 1/Next macro label/#1
MACROS 1/Directives/End conditional
LABELS/Replace single/Label
MACROS 1/Set macro label/#1
MACROS 1/Next macro label/#2
MACROS 1/Directives/End conditional
CURSOR/Absolute/Start of file
MACROS 1/Set macro label/#2

&H022C MACROS 1/Interactive/ON

While creating a macro, you may be presented with various requesters, that
require a string. When you run the macro, the requesters do not normally
appear, instead the functions that require strings get them from inside the
macro body. By selecting "MACROS 1/Interactive/ON", you can force ReSource
to display requesters during macro execution, allowing you to view the
strings that were used during the macro creation, and you may even change
them for this macro invocation.

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 50 of 93

Resource Help

Menu Functions

&H0247 MACROS 1/Set macro label/#1 &H024C MACROS 1/Next macro label/#1
&H0248 MACROS 1/Set macro label/#2 &H024D MACROS 1/Next macro label/#2
&H0249 MACROS 1/Set macro label/#3 &H024E MACROS 1/Next macro label/#3
&H024A MACROS 1/Set macro label/#4 &H024F MACROS 1/Next macro label/#4
&H024B MACROS 1/Set macro label/#5 &H0250 MACROS 1/Next macro label/#5
 &H0251 MACROS 1/Previous macro label/#1
 &H0252 MACROS 1/Previous macro label/#2
 &H0253 MACROS 1/Previous macro label/#3
 &H0254 MACROS 1/Previous macro label/#4
 &H0255 MACROS 1/Previous macro label/#5

Macro labels allow you to create control constructs within macros. For
example, using "MACROS 1/Set macro label/#1" is in effect defining a label
with the macro body. If you want the macro to loop back to this label, you
would use the "MACROS 1/Previous macro label/#1" function, at some point past
where "MACROS 1/Set macro label/#1". Similarly,
"MACROS 1/Next macro label/#1" will skip forward, to the next defined macro
label #1.

&H01FE MACROS 1/Suspend learn/Suspend

While creating a macro, you may have to use some functions in order to
continue the macro creation, but you do not want the functions actually
recorded into the macro. In this situation, you can select "suspend", do
what you have to do, and then turn "suspend" off again, to continue the macro
creation as normal.

&H0209 STRINGS/Get/Label

If there is a label defined at the cursor location, it will be copied to the
accumulator.

&H020A STRINGS/Get/Symbol

Copy the symbol from the selected field on the current line to the accumulator.

&H020B STRINGS/Get/Symbol - dest

Copy the symbol from the second field on the current line to the accumulator.

&H020E STRINGS/Get/Symbol value

Copy the symbol value from the selected field on the current line to the
accumulator.

&H020F STRINGS/Get/Symbol value - dest

Copy the symbol value from the second field on the current line to the
accumulator.

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 51 of 93

Resource Help

Menu Functions

&H020C STRINGS/Get/End-of-line comment

Copy the end-of-line comment attached to the current line to the accumulator.

&H020D STRINGS/Get/Full-line comment

Copy the first full-line comment attached to the current line to the
accumulator. See "LABELS/Edit single/Rotate F/L comments".

&H0232 STRINGS/Get/Search string

Copy the current search string to the accumulator.

&H0279 STRINGS/Get/Filename

Copy the current filename to the accumulator.

&H0240 STRINGS/Get/Save .asm name

If the current file has already been saved as source code (to a ".asm" file),
copy the filename used to the accumulator. If the current file has not
already been saved, the name will be the same as the current filename, with
".asm" appended.

&H0241 STRINGS/Get/Save .RS name

If the current file has already been saved to a .RS file, copy the filename
used to the accumulator. If the current file has not already been saved, the
name will be the same as the current filename, with ".rs" appended, unless
".rs" is already appended.

&H0244 STRINGS/Get/Macros filename

Copy the current macros filename to the accumulator.

&H021F STRINGS/Get/Keytable filename

Copy the current keytable filename to the accumulator.

&H0243 STRINGS/Get/Cursor byte

Write the data where the cursor is to the accumulator in hexadecimal,
decimal, or binary, depending on the setting of "STRINGS/Accumulator/". This
may be a byte, word, or longword, depending on the setting of "STRINGS/
Operand size".

&H0245 STRINGS/Get/Cursor offset

The currently displayed cursor location is written into the accumulator in
the current numeric base as a longword (the "operand size" is set to longwords).

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 52 of 93

Resource Help

Menu Functions

&H0245 STRINGS/Get/Cursor offset

&H027B STRINGS/Get/Accumulator length

The length of the string currently in the accumulator is written into the
accumulator in the current numeric base. The 'operand size' setting is not
affected, but is used to decide how many leading zeroes to use.

&H027C STRINGS/Get/Partial save size

The number representing the distance in bytes, between the partial save end
and the partial save start is written into the accumulator in the current
numeric base. The 'operand size' is set to longwords.

&H0242 STRINGS/Get/File

You will be asked to supply the name of a file, of which up to 240 characters
will be copied into the accumulator. The data is copied "as-is", no hex to
ASCII translation is performed. If you need to load a file that is larger
than 240 bytes, use the "STRINGS/Input buffer/Load", and then you can read
parts of it using the "STRINGS/Input buffer/Read $$$" functions, where "$$$"
can be line, byte, word, longword or character.

&H02C6 STRINGS/Get/Attribute bits

The attribute bits for the current location are copied into the accumulator,
using the current numeric base (hex/decimal/binary). The definitions for
these bits are described under "DISPLAY/Titlebar info/Attributes".

&H0213 STRINGS/Put/Label

If it is possible to use the string within the accumulator as a label on the
current line without creating a duplicate label, it will be done. Else, if it is
already used as a label, then a digit is appended to it, and again it is
tested to see if a label already exists of that name. This continues until a
unique label is created, then that label is attached to the current line.

This is a safe way of creating labels during macros.

If the label in the accumulator is of the local type, it will be used with no
duplicate check being done.

&H02C7 STRINGS/Put/Attributes

If the accumulator contains a valid number, that number will overwrite the
attributes for the current location. The definitions for these bits are
described under "DISPLAY/Titlebar info/Attributes". This function is within
the "dangerous" category. Do not experiment with this function on files that
you haven't got a backup of.

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 53 of 93

Resource Help

Menu Functions

&H02D2 STRINGS/Put/Base register

The support for base register-relative addressing allows any address register
to be used. This can be done by using either "STRINGS/Put/Base register", or
"SPECIAL FUNCTIONS/Specify Base Register". To use this function, you must
first place a number between 0 and 7 inclusive, into the accumulator. The
current base register in use will be visible in the "SPECIAL FUNCTIONS/
Convert (xx,An) EA's" function; you may see "(xx,A6)" instead of "(xx,A4)",
for example. For use in macros that must be able to calculate and enter the
base register number, this function may be used rather than
SPECIAL FUNCTIONS/Specify base register".

&H0205 STRINGS/Edit functions/Clip start

You will be asked to supply a string. Starting from the left, each character
in the supplied string is compared to the character in the accumulator at
that position, and if they are equal, the next character is compared, and so
on. When either the end of one of the strings is found, or when a mismatch
is found, the characters in the accumulator that matched are deleted. The
question mark ("?") is used as a wildcard, and you can use the asterisk once
only, to "delete everything up to and including" the following character.
Examples follow:

 Accumulator User-supplied string Resulting accumulator

 MOVE.L M OVE.L
 MOVE.L MUVE.L OVE.L
 MOVE.L MOV.L E.L
 MOVE.L move.l MOVE.L
 MOVE.L M?V E.L
 MOVE.L ??? E.L
 MOVE.L *. L
 MOVE.L *M OVE.L
 MOVE.L ?MOVE.L OVE.L
 _LVOAllocMem _LVO AllocMem
 $00000004 $000000 04

&H0206 STRINGS/Edit functions/Clip end

Similar to the "STRINGS/Edit functions/Clip start" function, except that
clipping is performed on the end of the accumulator string. The question
mark is still used as a wildcard, but the asterisk does not have a special
meaning in this function. Examples follow:

 Accumulator User-supplied string Resulting accumulator

 MEMF_PUBLIC ?PUBLIC MEMF
 MEMF_PUBLIC ??? MEMF_PUB
 MEMF_PUBLIC ?LC MEMF_PUBLI
 meMcollAOVL_ OVL_ meMcollA

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 54 of 93

Resource Help

Menu Functions

&H0207 STRINGS/Edit functions/Prepend

You will be asked to supply a string, which will be prepended to (added to
the beginning of) the accumulator, providing that the resulting string is no
longer than 240 characters. Examples follow:

 Accumulator User-supplied string Resulting accumulator

 PUBLIC MEMF_ MEMF_PUBLIC
 AllocMemSUB _ _AllocMemSUB
 PUBLIC CHIP CHIPPUBLIC

&H0208 STRINGS/Edit functions/Append

You will be asked to supply a string, which will be appended to (added to the
end of) the accumulator, providing that the resulting string is no longer
than 240 characters. Examples follow:

 Accumulator User-supplied string Resulting accumulator

 PUBLIC MEMF_ PUBLICMEMF_
 AllocMemSUB _ AllocMemSUB_
 PUBLIC CHIP PUBLICCHIP
 AllocMem SUB AllocMemSUB

&H0278 STRINGS/Edit functions/Reverse

The contents of the accumulator are reversed. Examples follow:

 Accumulator Resulting accumulator

 PUBLIC CILBUP
 AllocMemSUB BUSmeMcollA
 AllocMem meMcollA

&H027A STRINGS/Edit functions/Lower case

Any upper case characters in the accumulator are changed to their lower case
counterparts. Examples follow:

 Accumulator Resulting accumulator

 PUBLIC0123 public01243
 AllocMemSUB allocmemsub
 AllocMem allocmem

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 55 of 93

Resource Help

Menu Functions

&H025D STRINGS/Operand size/Byte
&H025E STRINGS/Operand size/Word
&H025F STRINGS/Operand size/Longword

Some functions in ReSource require to know whether to work at the byte, word,
or longword level. For example, "STRINGS/Get/Cursor value" could get a byte,
word, or longword from the cursor position, and this is your way of
specifying at which level you wish those functions to work. Generally, they
specify the size of the numeric operand in the accumulator. Some functions
that write a numeric value into the accumulator will set the operand size
themselves, others that get the value out of the accumulator need to know the
operand size.

&H029C STRINGS/Accumulator/Hex
&H029D STRINGS/Accumulator/Decimal
&H029E STRINGS/Accumulator/Binary

Options control whether to write the results of any maths functions to the
accumulator in hex, decimal, or binary.

&H0216 STRINGS/Maths functions/Increment

The increment function adds one to the accumulator. If the resulting number
develops a carry (using the current operand size), a macro 'fail' will
result. Thus, loops in macros can exit after a given number of iterations,
rather than a failed search, etc.

&H0217 STRINGS/Maths functions/Decrement

The decrement function subtracts one from the accumulator. If the resulting
number develops a carry (using the current operand size), a macro 'fail' will
result. Thus, loops in macros can exit after a given number of iterations,
rather than a failed search, etc.

&H022E STRINGS/Maths functions/Add

You will be asked for a number, to be added to the accumulator. If a carry
results, a macro 'fail' will occur.

&H022F STRINGS/Maths functions/Subtract

You will be asked for a number, to be subtracted from the accumulator. If a
carry results, a macro 'fail' will occur.

&H0230 STRINGS/Maths functions/Multiply

You will be asked for a number, to be multiplied by the number within the
accumulator. If a carry results, a macro 'fail' will occur. Full 32-bit
multiplies are supported, however the setting of 'operand size' is used when
determining the size of the operands.

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 56 of 93

Resource Help

Menu Functions

&H0231 STRINGS/Maths functions/Divide

You will be asked for a number. The contents of the accumulator will be
divided by the number that you specify. The divide function does NOT operate
on 32-bit operands, but otherwise will work at the currently set operand
size. If the current operand size is set to longwords, the divide will be
performed on the lower 16 bits only.

&H025C STRINGS/Maths functions/Negate

The number within the accumulator is negated, using the currently set operand
size. If the result is zero, a macro 'fail' will result.

&H02F2 STRINGS/Maths functions/Clear

Place a zero character ("0") into the accumulator.

&H025B STRINGS/Maths functions/Logical NOT

The number within the accumulator is NOT'd in bitwise fashion, using the
currently set operand size. If the result is zero, a macro 'fail' will result.

&H0258 STRINGS/Maths functions/Logical AND

You will be asked to supply a number, which will be bitwise AND'd with the
contents of the accumulator, and the result is stored back into the
accumulator. If the result is zero, a macro 'fail' will result.

&H0259 STRINGS/Maths functions/Logical OR

You will be asked to supply a number, which will be bitwise OR'd with the
contents of the accumulator, and the result is stored back into the
accumulator. If the result is zero, a macro 'fail' will result.

&H025A STRINGS/Maths functions/Exclusive OR

You will be asked to supply a number, which will be bitwise exclusive-OR'd
with the contents of the accumulator, and the result is stored back into the
accumulator. If the result is zero, a macro 'fail' will result.

&H02D1 STRINGS/Maths functions/ROL

You will be asked for a number, which is used in determining how many times
to rotate left the accumulator. The accumulator size is used to determine
whether 8, 16, or all 32 bits will be rotated. If the accumulator does not
contain a valid numeric value, a macro 'fail' will result.

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 57 of 93

Resource Help

Menu Functions

&H02D0 STRINGS/Maths functions/ROR

You will be asked for a number, which is used in determining how many times
to rotate right the accumulator. The accumulator size is used to determine
whether 8, 16, or all 32 bits will be rotated. If the accumulator does not
contain a valid numeric value, a macro 'fail' will result.

&H02F0 STRINGS/Maths functions/LSL

You will be asked for a number, which is used in determining how many times
to logical shift left the accumulator. The accumulator size is used to
determine whether 8, 16, or all 32 bits will be shifted. If the accumulator
does not contain a valid numeric value, a macro 'fail' will result.

&H02F1 STRINGS/Maths functions/LSR

You will be asked for a number, which is used in determining how many times
to logical shift right the accumulator. The accumulator size is used to
determine whether 8, 16, or all 32 bits will be shifted. If the accumulator
does not contain a valid numeric value, a macro 'fail' will result.

&H02F4 STRINGS/Maths functions/ASL

You will be asked for a number, which is used in determining how many times
to arithmetic shift left the accumulator. The accumulator size is used to
determine whether 8, 16, or all 32 bits will be shifted. If the accumulator
does not contain a valid numeric value, a macro 'fail' will result.

&H02F3 STRINGS/Maths functions/ASR

You will be asked for a number, which is used in determining how many times
to arithmetic shift right the accumulator. The accumulator size is used to
determine whether 8, 16, or all 32 bits will be shifted. If the accumulator
does not contain a valid numeric value, a macro 'fail' will result.

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 58 of 93

Resource Help

Menu Functions

&H0233 STRINGS/Define string/A &H023A STRINGS/Define string/H
&H0234 STRINGS/Define string/B &H023B STRINGS/Define string/I
&H0235 STRINGS/Define string/C &H023C STRINGS/Define string/J
&H0236 STRINGS/Define string/D &H023D STRINGS/Define string/K
&H0237 STRINGS/Define string/E &H023E STRINGS/Define string/L
&H0238 STRINGS/Define string/F &H023F STRINGS/Define string/M
&H0239 STRINGS/Define string/G &H0225 STRINGS/Define string/Acm

These functions allow to you define the contents of either the accumulator,
or one of the string buffers A-M. Whenever you are asked for a string using
the simple string requester (NOT the large file requester), you can either
type in a string literal, or input an escape character (just press the escape
key), followed by either another escape character, or one of the letters A-M
inclusive. If the second character is the escape character, the string being
requested will be copied from the accumulator instead. If the second
character that you typed (after the escape character) is one of the letters
A-M, then the string being requested will instead be copied from the
appropriate buffer A-M. This applies even when you are defining the contents
of one of the string buffers. This method of using indirection should be
particularly handy in sophisticated macros.

The maximum string length in any buffer (including the accumulator) is 240
characters.

&H027F STRINGS/Swap with buffer../A &H0286 STRINGS/Swap with buffer../H
&H0280 STRINGS/Swap with buffer../B &H0287 STRINGS/Swap with buffer../I
&H0281 STRINGS/Swap with buffer../C &H0288 STRINGS/Swap with buffer../J
&H0282 STRINGS/Swap with buffer../D &H0289 STRINGS/Swap with buffer../K
&H0283 STRINGS/Swap with buffer../E &H028A STRINGS/Swap with buffer../L
&H0284 STRINGS/Swap with buffer../F &H028B STRINGS/Swap with buffer../M
&H0285 STRINGS/Swap with buffer../G

The contents of the accumulator is swapped the with contents of the chosen
buffer [A-M].

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 59 of 93

Resource Help

Menu Functions

&H02A9 STRINGS/Input buffer/Load
&H02AB STRINGS/Input buffer/Restart
&H02AA STRINGS/Input buffer/Read line

The Input and Output buffers can be used to buffer textual information
between a file and the accumulator within ReSource. To transfer information
into ReSource, you load the input buffer, using "Load", and transfer a line
at a time to the accumulator, using "Read line". Each time you read a line
from the input buffer, it replaces the contents of the accumulator.
Successive uses of "Read line" will get successive lines from the input
buffer. A line means all text up to a line feed, to a maximum of 240
characters. The line feed is NOT transferred, as the line will be null
terminated within the accumulator. To start reading lines from the start of
the buffer again, use "Restart". For example, you may have a list of labels
that you wish to put into the current file. Use "Load" to get the list of
labels into the input buffer, then create a macro something like:

 CURSOR/Relative/Next label
 STRINGS/Input buffer/Read line
 STRINGS/Put/Label
 MACROS 1/Previous macro label/#1

The first function will advance the cursor to the next label.
The second function reads the next label to use into the accumulator.
The third function will replace the current label with the one in
the accumulator.
The last function ("MACROS 1/Previous macro label/#1") is optional. It will
make the function repeat for the entire file, or the entire list of labels,
whichever ends first.

Instead of reading an entire line, you may read just a byte, word, longword
or character from the input buffer. Bytes, words and longwords are read as-
is, and translated into a string, using the current accumulator numeric type.
Characters are read as-is, and placed into the accumulator without
translation.

&H0385 STRINGS/Input buffer/Read byte

Read a byte from the input buffer, and place it in the accumulator using the
currently defined accumulator numeric type (decimal/hex/binary).

&H0386 STRINGS/Input buffer/Read word

Read a word from the input buffer, and place it in the accumulator using the
currently defined accumulator numeric type (decimal/hex/binary).

&H0387 STRINGS/Input buffer/Read longword

Read a longword from the input buffer, and place it in the accumulator using
the currently defined accumulator numeric type (decimal/hex/binary).

&H0388 STRINGS/Input buffer/Read character

Read a character from the input buffer, and insert it directly into the
accumulator, without translation.

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 60 of 93

Resource Help

Menu Functions

&H0388 STRINGS/Input buffer/Read character

&H02AC STRINGS/Output buffer/Save
&H02AE STRINGS/Output buffer/Clear
&H02AD STRINGS/Output buffer/Append accumulator

The output buffer is used to hold information that you wish to save from
ReSource. The idea here is that you append the contents of the accumulator
to the end of the output buffer, and eventually save the entire contents of
the output buffer to a file. For example, you might wish to create a list of
labels for the current file (see "STRINGS/Input buffer/:"). The following
macro will do this:

 CURSOR/Relative/Next label
 STRINGS/Get/Label
 STRINGS/Edit functions/Append
 STRINGS/Output buffer/Append accumulator
 MACROS 1/Previous macro label/#1

Note: Prior to actually running this macro, you should ensure that the cursor
is at the start of file, and use the function "STRINGS/Output buffer/Clear",
to ensure the output buffer is empty.

The first line will move the cursor to the next label in the file. The
second function will put the current label into the accumulator. The third
function will prompt you for a string to append to the accumulator. A line
feed (ASCII value 10) is required here, to do this, first click inside the
requester string gadget, hold down the ctl key, and press "J", then press
return or click on the "OKAY" gadget. Rather than use ctl-J, you may instead
use "\n". The fourth function, "STRINGS/Output buffer/Append accumulator",
will add the current contents of the accumulator to the end of the Output
buffer. Memory is dynamically allocated for the output buffer, so maximum
size is only determined by how much memory you have. The fifth function is
optional, use it if you want the macro to loop until all labels in the
current file are added to the list.

Once this is done, use "STRINGS/Output buffer/Save" to save the current
contents of the output buffer. You will be asked for a filename to use. In
practice, most people will probably combine several pieces of information for
each line that gets appended to the output buffer, such as label, followed by
its offset from the start of the file, or its data type, etc.

&H016F reserved

When you select this function, it is identical to selecting the same menuitem
that was last selected. Functions that were used by pressing keys are not
repeated, just menu items. So, it's a good idea to bind this function to a
key that is very easy to get to - like the space bar.

This function is most useful when a particular of the file that you are
disassembling requires a particular symbol base used many times. It may be
very rarely that you use many symbol bases, so it isn't really worth
rebinding a key to that function. So, you simply select the function from
the menus, scroll to the next line that needs that symbol base again, and
press<space bar> to use that symbol base again (assuming that you have got
"repeat command" bound to the space bar).

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 61 of 93

Resource Help

Menu Functions

&H01C9 */DOS command

You will be asked for a string, which will be given as the operand to the Dos
"execute" function. Anything that you normally type into a CLI window, you
can give as a command. Any output will go to the CLI window from which you
started ReSource, unless you redirect the output elsewhere. The "Run"
command must be in your C: directory (or resident). This function is not
available if you started ReSource from the icon.

&H0226 */ZAP/Zap

You will be asked for a number/string, which will overwrite the byte/word/
longword/characters at the cursor position. The current setting of 'operand
size' is used. Using "PROJECT/Open binary file", then this function,
followed by "SAVE/Save binary image/ALL", you can quickly modify a file,
without having to go through the disassemble/edit/reassemble/link cycle.

However, when using this method of modification, you are restricted as to the
size of changes that may be legally made. For example, you cannot insert
extra code or data, nor can you delete it. You may "NOP" it instead, though.
If the string that you supply starts with a single quote ("'"), the following
characters are treated as a string, and are copied to the cursor position
"as-is".

If the string that you supply starts with "$", the following number is
assumed to be hexadecimal. If the string that you supply starts with "%",
the number that follows is assumed to be binary, otherwise it is assumed to
be a decimal number.

If the string you supply starts with "l.", "w." or "b.", the number following
will be treated as a longword, word, or byte, respectively. In this case,
the accumulator operand size does not matter. The case of the letter "l",
"w", or "b" may be upper or lower.

See also:
 "*/ZAP/Zap2"

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 62 of 93

Resource Help

Menu Functions

&H0679 */ZAP/Zap2

"Zap2" is functionally equivalent to "Zap", but has a much better user
interface.

When you call "Zap2", it tries to make an educated guess about whether
it's looking at code or data, and if data, the appropriate size. It then
puts the code/data into the string gadget, and waits for you to either edit
the string, or change the mode/data type.

If the Mode=CODE, ReSource will try to assemble the string. If the
Mode=DATA, ReSource will attempt to convert the string to binary data. Any
problems will be reported, and you will be given a chance to edit the string,
or abort the zap.

In data mode, only as much of the binary data as defined by the Data Size
gadgets will be written to the file. If you define the size as Byte and edit
the string as "$12345678", only $78 will be written.

If the Data Type is set to ASCII, the data will be copied literally to the
string gadget buffer until a null is reached, for up to 127 bytes. If the
data wasn't really text, this will be difficult to read. When "OK" is
pressed, the entire string, exactly as shown including 1 null byte, will be
written back to the file.

Note that "Zap2" isn't compatible with macros. If "Zap2" is called
while learning a macro, it will immediately jump to "Zap", instead. If
"Zap2" is called while a macro is running, it will cause a macro fail.

"Zap2" requires simpleasm.library to be available for the CODE mode to work.

See also:
 "*/ZAP/Zap"

&H022A */Screen/Front
&H022B */Screen/Back

"Front" moves ReSource's screen in front of all other screens. "Back" moves
ReSource's screen behind all other screens.

&H0277 */Set task priority

You will be asked for a number, representing the priority at which to set the
current task. For example, if you have a program being assembled in the
background, and you don't want it to slow down the operation of ReSource, you
might set the task priority to one or two.

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 63 of 93

Resource Help

Menu Functions

&H0296 */Origin/Set
&H0298 */Origin/Specify
&H0297 */Origin/Clear

There is sometimes a requirement to disassemble a block of code, as if it is
loaded to some particular area of memory, other than that to which it is now
loaded. For example, if you disassemble Kickstart(TM), and save the binary
image, then later load this into ReSource, it will not disassemble properly
unless ReSource "thinks" that its origin is correct. To do this, load the
file, then use the "Specify" option. Both the "Specify" and "Set" set the
origin to an absolute address; the "Set" option is the same as "Specify",
except that it assumes that the current loading address is to be used. These
options are really only useful if the file is loaded as a binary image, or
from track, or memory. If loaded from an executable, the reloc32 information
will ensure that proper relocation is done where needed. It is because no
reloc32 information is available when opening files other than load files,
that this function is required. To remove the origin, so that it uses
whatever actual address the file is loaded to, use the "Clear" option.

&H004F */Convert (xx,A4) EA''s/This operand

Enables (xx,An) type Effective Address conversions, and sets "DT" to the
operand of the current line. See "EA conversions".

&H0028 */Convert (xx,A4) EA''s/This address

Enables (xx,An) type Effective Address conversions, and sets "DT" to the
cursor address.

&H0019 */Convert (xx,A4) EA''s/Specify

You will be asked to supply a number. ReSource will then use this in
resolving address register relative Effective Addresses. The number that you
supply is assumed to be the offset from the start of the current file, where
the currently selected address register will point to at runtime.

By using this function, you not only set the new offset for (xx,An) conversions
you also enable conversions to be done. To disable (xx,An) conversions, use
"SPECIAL FUNCTIONS/Convert (xx,An) EA's/Disable".

To tell ReSource which address register to use for conversions (only one can
be used), use "SPECIAL FUNCTIONS/Specify Base Register/", and the appropriate
register A0-A7.

&H0020 */Convert (xx,A4) EA''s/Set lower limit

For (xx,An) Effective Address conversions, the lower limit will be set to the
current cursor position.

&H0021 */Convert (xx,A4) EA''s/Set upper limit

For (xx,An) Effective Address conversions, the upper limit will be set to the
current cursor position.

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 64 of 93

Resource Help

Menu Functions

&H02AF */Convert (xx,A4) EA''s/Relative
&H02B0 */Convert (xx,A4) EA''s/Absolute

When using the "Convert (xx,An) EA's" functions, the original effective
address can be converted to either a symbol form of the original, or it can
be changed to an absolute reference. Selecting "Relative" will mean that
lines such as:

 CLR.L (-$FEA2,A4)

would be displayed something like:

 CLR.L (START+$4D6E-DT,A4)

By selecting "Absolute", it would instead show as:

 CLR.L (START+$4D6E)

&H02DB */Convert (xx,A4) EA's/Disable

Disables base register conversions.

&H034D */Convert (xx,A4) EA''s/Data refs only
&H0350 */Convert (xx,A4) EA''s/All references

If "Data refs only" is selected, whenever base register conversions are done,
only those that are the result of a data reference will be converted.
Selecting "All references" allows all references to be converted (both data
and code).

&H02D3 */Specify Base Register/A0 &H02D7 */Specify Base Register/A4
&H02D4 */Specify Base Register/A1 &H02D8 */Specify Base Register/A5
&H02D5 */Specify Base Register/A2 &H02D9 */Specify Base Register/A6
&H02D6 */Specify Base Register/A3 &H02DA */Specify Base Register/A7

This function permits you to select the register to be used for base register
conversions. See also "STRINGS/Put/Base register".

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 65 of 93

Resource Help

Menu Functions

&H0056 */Convert specific EA''s/Set base #1
&H0057 */Convert specific EA''s/Set base #2
&H0058 */Convert specific EA''s/Set base #3
&H0059 */Convert specific EA''s/Cvert W/base 1
&H005A */Convert specific EA''s/Cvert W/base 2
&H005B */Convert specific EA''s/Cvert W/base 3

Use this function to convert numbers into symbols that represent the
distance between two labels. You may need to do this where there is a table
of words, where each word represents the distance between some base address,
and the entry point of some code to execute. Examine the following:

 MOVE.W (lbW001170,PC,D0.W),D0
 JMP (lbW001170,PC,D0.W)

lbW001170 dw 8
 dw $18
 dw $38
 dw $40
 dw $24BC
 dl Cannotopendev.MSG
 dw $603E
 MOVE.L #Notenoughmemo.MSG,(A2)
 BRA.B START+$11BE

 MOVE.L #CannotopenAmi.MSG,(A2)
 BRA.B START+$11BE

 MOVE.L #Writeprotecte.MSG,(A2)
 BRA.B START+$11BE

 MOVE.L #Diskchangedno.MSG,(A2)
 BRA.B START+$11BE

 MOVE.L #Seekerror.MSG,(A2)
 BRA.B START+$11BE

 MOVE.L #Disksizeerror.MSG,(A2)
 BRA.B START+$11BE

 MOVE.L #Verifyerror.MSG,(A2)
 BRA.B START+$11BE

In the above code, there is a "jump table" starting at label "lbW001170". It
consists of four words. The first word, of value 8, represents the distance
between the label "lbW001170" and some code to execute. To make sense of
this jump table, and allow it to reassemble correctly, scroll to the label
"lbW001170", and select the
"SPECIAL FUNCTIONS/Convert specific EA's/Set base #1" function. We know that
this is the "base" of the jump table because of the instruction:

 JMP (lbW001170,PC,D0.W)

Next, we do the actual conversions. Starting at the first word of the jump
table, select "*/Convert specific EA's/Cvert W/base 1", scroll to the next
line, and continue for each of the four words in the jump table. The
result will be:

 MOVE.W (lbW001170,PC,D0.W),D0
 JMP (lbW001170,PC,D0.W)

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 66 of 93

Resource Help

Menu Functions

&H0056 */Convert specific EA''s/Set base #1
&H0057 */Convert specific EA''s/Set base #2
&H0058 */Convert specific EA''s/Set base #3
&H0059 */Convert specific EA''s/Cvert W/base 1
&H005A */Convert specific EA''s/Cvert W/base 2
&H005B */Convert specific EA''s/Cvert W/base 3

lbW001170 dw lbC001178-lbW001170
 dw lbC001188-lbW001170
 dw lbC0011A8-lbW001170
 dw lbC0011B0-lbW001170
lbC001178 MOVE.L #Cannotopendev.MSG,(A2)
 BRA.B START+$11BE

 MOVE.L #Notenoughmemo.MSG,(A2)
 BRA.B START+$11BE

lbC001188 MOVE.L #CannotopenAmi.MSG,(A2)
 BRA.B START+$11BE

 MOVE.L #Writeprotecte.MSG,(A2)
 BRA.B START+$11BE

 MOVE.L #Diskchangedno.MSG,(A2)
 BRA.B START+$11BE

 MOVE.L #Seekerror.MSG,(A2)
 BRA.B START+$11BE

lbC0011A8 MOVE.L #Disksizeerror.MSG,(A2)
 BRA.B START+$11BE

lbC0011B0 MOVE.L #Verifyerror.MSG,(A2)
 BRA.B START+$11BE

Notice that the labels "lbC001178", "lbC001188", "lbC0011A8" and "lbC0011B0"
were created, and that the data type was set to code.

&H01BD */Data type set/Code
&H01BE */Data type set/ASCII
&H01BF */Data type set/Bytes
&H01C0 */Data type set/Words
&H01C1 */Data type set/Longwords
&H01C2 */Data type set/Automatic

Affects how the "SPECIAL FUNCTIONS/Convert specific EA's" functions work.
When the data type must be determined, it can be automatic, or you can force
it to be set to Bytes, Words, Longwords, ASCII, or Code.

&H01C3 */Convert to../Absolute
&H01C4 */Convert to../Offset

Determines the type of symbol created when the
"SPECIAL FUNCTIONS/Convert specific EA's" functions are used, either an
Absolute or Offset value.

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 67 of 93

Resource Help

Menu Functions

&H029F */Reloc32/Delocate
&H02A0 */Reloc32/Relocate

Use these functions to specifically delocate or relocate the current file.
This is only useful if the file was loaded from an executable, where reloc32
information is present. Be aware that relocation is performed immediately
after the "PROJECT/O'lay binary image" function, when a file is actually
loaded.

&H02EB */Run .rcl file

This function asks you for the name of a file, which is expected to be a
compiled ReSource command language file. If the file can be opened
successfully, it will be executed by ReSource's new command language
interpreter. The contents of the file itself determine exactly what will
happen next.

The compiled command language file supplied with this release should be used
immediately after loading any Aztec "C" program, specifically those compiled
with the V3.6 compiler. It will be able to recognize many of the standard
"C" functions that get compiled into Aztec "C" programs.

The command language interpreter has built-in functions that allow it to be
programmed to recognize a sequence of information, and if all tests were
successful, a sequence of actions are taken. The sequence of actions might
include creating labels, symbols, setting data types, creating comments, etc.

There are no current plans to make the command language itself public
knowledge. It is highly complex, and very difficult to write in. Also, the
form of the language is still undergoing changes.

&H02BE SAVE/Partial save/Reset start

Sets the partial save start to the start of the file.

&H021C SAVE/Partial save/Set start
&H021D SAVE/Partial save/Set end

Set the start/end of the "partial save" area. The functions that will be
affected are:

SAVE/Save .asm/Partial
SAVE/Calculate .asm size/Partial
SAVE/Save binary image/Partial
SAVE/Save tracks/Partial
STRINGS/Get/Partial save size
SAVE/Save to memory/Partial

&H02BF SAVE/Partial save/Reset end

Sets the partial save end to the end of the file.

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 68 of 93

Resource Help

Menu Functions

&H01C7 SAVE/Save binary image/All

Save the current buffer contents "as-is", to a file. If the file was loaded
with "PROJECT/Open load file", and was NOT loaded as a binary image file, the
resulting saved file will NOT be the same as that originally loaded, because
the loader information, and relocation information, has been stripped. If
you wish to load a file, and then save it exactly as it was loaded, you
should use "PROJECT/Open binary file". Even though you may have disassembled
memory directly, or read tracks from a floppy disk, it does NOT stop you from
saving the binary image.

Once something is loaded into ReSource, it can be saved as source code, as a
binary image file, directly to memory, or it can be written directly to a
floppy disk, to a specific sector or track. If you originally loaded the
file using "PROJECT/Open load file", you can also use
"SAVE/Save executable/". This gives fantastic flexibility for general
hacking, for as little as one byte of the current buffer can be saved to
memory, to a binary image file, or as source code. Track writes must be in
multiples of 512 bytes, however the clipping is done for you.

Save "Partial" is similar to the above function, except only the data between
the partial save start and the partial save end is saved.

&H0272 SAVE/Save binary image/Partial

Similar to the "SAVE/Save binary image/All" function, except that only the
area between the partial save start and partial save end, will be saved.

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 69 of 93

Resource Help

Menu Functions

&H036E SAVE/Save binary image/Original
&H0372 SAVE/Save binary image/Current dir
&H036A SAVE/Save binary image/Specify

You can set up the environment in ReSource to specify where files are to be
saved. There are 3 different sets of functions that you can use to specify
the behaviour of:

"PROJECT/Save .RS/Save"
"SAVE/Save binary image/All"
"SAVE/Save binary image/Partial"
"SAVE/Save .asm/All"
"SAVE/Save .asm/Partial"
"SAVE/Save executable/With Labels"
"SAVE/Save executable/No Labels"

1. Current dir
If enabled, the default path to save files to will be the same path as where
the file was loaded from. When the file requester is displayed, you will
only see the file name.

2. Original
If enabled, the default path to save files will be the current directory.
When the file requester is displayed, you will see the path and the file
name. If the file was loaded from the current directory, the behaviour will
be the same as for "Original".

3. Specify
You will be asked to supply a pathname, which will be used as the default
path to save files to in future. This pathname will be saved in the
"Auto-configuration" macro when you select "PROJECT/Save Configuration".

&H0018 SAVE/Save .asm/All

You will be asked to supply the name of a file to save source code to, for
the entire buffer contents. The output will be very similar to how you see
it on the display. The "equates" or "xref" table will be saved first.

If "OPTIONS/Allow.../Error comments" is enabled, lines on which an error has
been detected will have a full-line comment appended to them, describing the
type of error detected.

&H0185 SAVE/Save .asm/Partial

Similar to the "SAVE/Save .asm/All" function, with the following exceptions:

1. Only the lines between the partial save start, and the partial save end
 are saved. See "SAVE/Partial save/Set start".

2. No "equates" or "xref" table is created, nor does any of the header
 information that normally is saved in a ".asm" file saved. You get just
 the lines that you selected, and nothing else.

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 70 of 93

Resource Help

Menu Functions

&H036B SAVE/Save .asm/Original
&H036F SAVE/Save .asm/Current dir
&H0367 SAVE/Save .asm/Specify

You can set up the environment in ReSource to specify where files are to be
saved. There are 3 different sets of functions that you can use to specify
the behaviour of:

"PROJECT/Save .RS/Save"
"SAVE/Save binary image/All"
"SAVE/Save binary image/Partial"
"SAVE/Save .asm/All"
"SAVE/Save .asm/Partial"
"SAVE/Save executable/With Labels"
"SAVE/Save executable/No Labels"

1. Current dir
If enabled, the default path to save files to will be the same path as where
the file was loaded from. When the file requester is displayed, you will
only see the file name.

2. Original
If enabled, the default path to save files will be the current directory.
When the file requester is displayed, you will see the path and the file
name. If the file was loaded from the current directory, the behaviour will
be the same as for "Original".

3. Specify
You will be asked to supply a pathname, which will be used as the default
path to save files to in future. This pathname will be saved in the
"Auto-configuration" macro when you select "PROJECT/Save Configuration".

&H01BB SAVE/Calculate .asm size/All

Calculates the size of the source code file that would result if you had
used the "SAVE/Save .asm/ALL" function.

&H021E SAVE/Calculate .asm size/Partial

Calculates the size of the source code file that would result if you had
used the "SAVE/Save .asm/Partial" function.

&H027D SAVE/Save to memory/All
&H027E SAVE/Save to memory/Partial

You will be asked to supply a memory address to save the contents of the
current buffer. The buffer will be saved "as-is"; NOT as disassembled
source. Care should be taken with this function, as a system crash will
likely result if you supply the wrong address. By finding out where the
current buffer is in memory, (by using "DISPLAY/Cursor Address/Absolute") it
is possible to copy one part of the current buffer to another part. This
will require judicious use of "SAVE/Save to memory/Partial".

Save "Partial" is as above, except that only the data between the partial
save start and the partial save end is saved.

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 71 of 93

Resource Help

Menu Functions

&H0274 SAVE/Save tracks/All
&H0275 SAVE/Save tracks/Partial

You will be asked for a string representing where to start writing tracks.
The first parameter you give must be either "DF0:", "DF1:", "DF2:", or
"DF3:". The second parameter is the starting cylinder to save to. The third
parameter is optional, and represents an offset, in sectors, where the track
write is to start. For example, to save sector #3 on cylinder 5 on DF2:, the
parameters required would be "DF2: 5 3". To save to the first sector on
DF0:, the parameters required would be "DF0: 0". Whole sector writes ONLY
are done, clipping is performed automatically.

Save "Partial" is as above, except that only the data between the partial
save start and the partial save end is saved. Furthermore, only even
multiples of 512 bytes will be written. For example, if the partial save
size is 1027 bytes, only two sectors (1024 bytes) will be written to the disk.

&H0275 SAVE/Save tracks/Partial

You will be asked for a string representing where to start writing tracks.
The first parameter you give must be either "DF0:", "DF1:", "DF2:", or
"DF3:". The second parameter is the starting cylinder to save to. The third
parameter is optional, and represents an offset, in sectors, where the track
write is to start. For example, to save sector #3 on cylinder 5 on DF2:, the
parameters required would be "DF2: 5 3". To save to the first sector on
DF0:, the parameters required would be "DF0: 0". Whole sector writes ONLY
are done, clipping is performed automatically.

Save "Partial" is as above, except that only the data between the partial
save start and the partial save end is saved. Furthermore, only even
multiples of 512 bytes will be written. For example, if the partial save
size is 1027 bytes, only two sectors (1024 bytes) will be written to the disk.

&H02B6 SAVE/Save screen

This function will prompt you for the name of a file. If the file can be
opened, it will save the currently displayed text to that file. Use this to
send a screen dump to the printer, or any other file. Note that this can be
used at the completion of a "save .asm", to get a printout of the source code
profile. Almost any function will cause a display refresh, so this must be
the first function used. If you have to re-activate ReSource's window for
any reason, in order to avoid refreshing the display (and erasing this
information in doing so), place the mouse pointer at the extreme left edge of
the screen, then press the LMB.

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 72 of 93

Resource Help

Menu Functions

&H0307 SAVE/Save executable/With Labels
&H0365 SAVE/Save executable/No Labels

This function attempts to create an executable program from the file
currently being disassembled. Not all programs can be changed back into an
executable successfully. The main problem here is with programs that have
reloc32s pointing to somewhere outside the referenced hunk. Also, programs
that contain overlays will definately not be recreated successfully.

This function does NOT reassemble the current disassembly, and it is because
of this that a complete disassembly is NOT necessary to create a good
executable. It is expected that the main use of this function will be
performing minor modifications/zaps to executable programs. This was
possible with previous versions of ReSource, however the user was forced to
load the file as a binary image, which made it difficult to find the place in
the file where the modification was necessary. Now, you may load a program
using the "PROJECT/Open load file" function, disassemble only as much as
necessary to find the part that requires modification, do the necessary zaps,
and use this function to recreate the modified executable. Labels may be
saved in SYMBOL hunks, which may be read and used by debuggers.

&H036D SAVE/Save executable/Original
&H0371 SAVE/Save executable/Current dir
&H0369 SAVE/Save executable/Specify

You can set up the environment in ReSource to specify where files are to be
saved. There are 3 different sets of functions that you can use to specify
the behaviour of:

"PROJECT/Save .RS/Save"
"SAVE/Save binary image/All"
"SAVE/Save binary image/Partial"
"SAVE/Save .asm/All"
"SAVE/Save .asm/Partial"
"SAVE/Save executable/With Labels"
"SAVE/Save executable/No Labels"

1. Current dir
If enabled, the default path to save files to will be the same path as where
the file was loaded from. When the file requester is displayed, you will
only see the file name.

2. Original
If enabled, the default path to save files will be the current directory.
When the file requester is displayed, you will see the path and the file
name. If the file was loaded from the current directory, the behaviour will
be the same as for "Original".

3. Specify
You will be asked to supply a pathname, which will be used as the default
path to save files to in future. This pathname will be saved in the
"Auto-configuration" macro when you select "PROJECT/Save Configuration".

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 73 of 93

Resource Help

Menu Functions

&H004B SAVE/Tabs/Real tabs
&H004C SAVE/Tabs/Spaces

Use to select between real tabs (ASCII value 9) and spaces being used in the
output source code as separators.

&H0192 SAVE/Symbol table/None
&H0193 SAVE/Symbol table/XREF
&H0194 SAVE/Symbol table/EQUate

When creating symbols, either automatically or manually, the value and name
of the symbol is stored, so that when the source code is saved, an equate
table, or XREF table can be generated. If this function is set to "EQUate",
a symbol table similar to the following will precede the source code in the
output file:

AG_OpenLib EQU $00030000
AO_DOSLib EQU $00008007
AT_Recovery EQU $00000000
_LVOAlert EQU $FFFFFF94
_LVOClose EQU $FFFFFFDC
_LVOCreateProc EQU $FFFFFF76
_LVOCurrentDir EQU $FFFFFF82

If, instead, this function is set to "XREF", a symbol table similar to the
following will preceed the source code in the output file:

 XREF AG_OpenLib
 XREF AO_DOSLib
 XREF AT_Recovery
 XREF _LVOAlert
 XREF _LVOClose
 XREF _LVOCreateProc
 XREF _LVOCurrentDir

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 74 of 93

Resource Help

Menu Functions

&H0053 KEY BINDINGS/Rebind key

Every function that you see in ReSource's menus can be bound to a key,
except "abort" which is permanently bound to rightAmiga-A. Both Amiga-keys
are supported, you may use shift, alt, ctrl, lAmiga, rAmiga, shift-alt,
shift-ctrl, alt-ctrl, or shift-alt-ctrl, in combination with any non-
qualifier key, as a distinct key to which to bind a function. You may, of
course, also use non-qualifier keys by themselves. Thus, you have complete
control over which keys do what. After re-binding some keys, you will
probably want to save the keytable. If you save the keytable as
"S:RS.keytable", it will be loaded every time you run ReSource.

You may want to create several keytables, suitable for doing differing
program types (C, assembler, etc.). If a keytable file is loaded, ALL current
key bindings will be overwritten by the bindings present in the keytable. If
you don't load any keytable, and ReSource couldn't find "S:RS.Keytable" when
you first ran it, some keys will still be bound:

 right-Amiga Q PROJECT/Quit
 right-Amiga O Open load file
 up arrow CURSOR/Relative/Next line
 down arrow CURSOR/Relative/Previous line
 right arrow CURSOR/Absolute/Fwd reference
 left arrow CURSOR/Absolute/Previous location
 shift-up arrow CURSOR/Relative/Previous page
 shift-down arrow CURSOR/Relative/Next page
 HELP PROJECT/ -<HELP>-
To rebind a key, select "KEY BINDINGS/Rebind key", and follow the prompts in
the title bar.

&H0638 KEY BINDINGS/Report key

<RESERVED>

&H0054 KEY BINDINGS/Save key table

Save the current keytable. See "KEY BINDINGS/Rebind key".

&H0055 KEY BINDINGS/Load key table

Load a keytable. See "KEY BINDINGS/Rebind key".

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 75 of 93

Resource Help

Button Window Functions

&H037F CURSOR/Binary search/Any alignment

When the "CURSOR/Binary search/" functions are used, all matches will be
"found", not just those starting on a word boundary.

&H0382 CURSOR/Binary search/Find next occurrence

Using the currently defined search parameters, search forward through the
buffer, for a match. Note that it is the buffer itself that it searched, not
a disassembly of the buffer.

&H0383 CURSOR/Binary search/Find previous occurrence

Using the currently defined search parameters, search backward through the
buffer, for a match. Note that it is the buffer itself that it searched, not
a disassembly of the buffer.

&H037D CURSOR/Binary search/Set search parameters

You will be asked to enter a string, which will be used in the
"CURSOR/Binary search/Find next occurrence" and
"CURSOR/Binary search/Find previous occurrence" functions. You may use the
same type of parameters as you would supply to a "dc.b" directive in
assembler source code. For example, if you wished to search for a null-
terminated "dos.library" string, you would use:

'dos.library',0

If you wanted to search for a "NOP" instruction, you would use:

$4E71

You can use decimal, hex or binary numbers. They may be preceeded by "b.",
"w." or "l.", to force following numbers to be seen as byte, words, or
longwords, respectively. For example, if you wanted to search for the
longword values 1,2,3, followed by the string "dos.library" followed by the
bytes $45 and $7E, you would use:

l.1,2,3,'dos.library',b.$45,$7E

If you don't specify any of the "b.", "w." or "l." size specifiers, the
values that you supply will default to the smallest size that those values
will fit into. Thus, "123" "$FF" and "000000001" will be treated as bytes,
and "$200" and "12345" will be treated as words. An exception to this is
with binary numbers. If you specify a binary number that consists of more
than 16 digits, it will be treated as a longword value, even if they are all
"0" digits.

&H037E CURSOR/Binary search/Word aligned only

When the "CURSOR/Binary search/" functions are used, only matches that start
on a word boundary will be "found".

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 76 of 93

Resource Help

Button Window Functions

&H034B CURSOR/Buffer search/Find next occurrence
&H034C CURSOR/Buffer search/Find previous occurrence

Using the currently defined search string, the buffer is searched for a
matching string. Note carefully here that it is the *buffer* that is
searched, not a *disassembly* of the buffer as is the usual case. For
example, if the string "dos.library" were currently displayed as:

 db 'dos.lib'
 db 'ra'
 db 'ry',0

a normal search would be able to find "dos.lib", or "ra", or even "'ry',0".
But because the buffer search searches the buffer itself, it would find the
string "dos.library", regardless of how it was being displayed. And because
the buffer is not disassembled in the search process, it searches around 110
times faster than a normal search.

&H0352 CURSOR/Label search/Find next occurrence
&H0353 CURSOR/Label search/Find previous occurrence
&H0351 CURSOR/Label search/Specify label

The "Label search" functions allow you to find labels by searching the label
definitions themselves, rather than disassembling each line of code looking
for label definitions. This way, labels can be found very quickly (around
500 times faster than performing a normal search). By selecting either "find
next occurrence" or "find previous occurrence", you are able to find every
occurence of the label. In the case of local labels, there may be quite a
few.

&H01AC CURSOR/Normal search/Find nearest occurrence

Similar to "CURSOR/Normal search/Find next occurrence", except that search
proceeds both forwards and backwards alternately, line for line, until a
match is found, or until the entire buffer has been searched.

&H01AA CURSOR/Normal search/Find next occurrence

Using the currently defined search string, search forward for the next
occurrence of that string. The string is searched for as-is, including
question marks, asterisks, etc., which in a pattern search take on special
meaning. This function will search a disassembly of the current buffer, not
the buffer itself. This means that the state of disassembly will affect the
search. For example, if you are searching for the string "dos.library", it
will only be found if that data type was set to "ascii" at the appropriate
location. See "CURSOR/Buffer search/Find next occurrence".

&H01AB CURSOR/Normal search/Find previous occurrence

Similar to "CURSOR/Normal search/Find next occurrence", except that search
proceeds backwards.

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 77 of 93

Resource Help

Button Window Functions

&H0215 CURSOR/Normal search/Search accumulator

Using the currently defined search string, search the accumulator, and if a
match is not found, perform a macro fail, else exit normally.

&H0257 CURSOR/Normal search/Search this line

Using the currently defined search string, search the current line only, and
if a match is not found, perform a macro fail, else exit normally.

&H004D CURSOR/Normal search/Set search string

You will be asked to supply a string, which will be used in future searches
of the "normal" and "buffer" type.

Like all other string requests, string indirection may be used.

&H01A9 CURSOR/Pattern search/Find nearest occurrence

Using the currently defined search string, search for the nearest occurrence
of that string. ARP wildcard characters are expanded (not used literally).
This is a bi-directional search.

&H004E CURSOR/Pattern search/Find next occurrence

Similar to the "CURSOR/Normal search/Find next occurrence" function, except
that wildcard characters are expanded (not used literally).

&H01A8 CURSOR/Pattern search/Find previous occurrence

Using the currently defined search string, search backward for the previous
occurrence of that string. ARP wildcard characters are expanded (not used
literally).

&H0214 CURSOR/Pattern search/Search accumulator

Using the currently defined search string, search the accumulator, and if a
match is not found, perform a macro fail, else exit normally. ARP wildcard
characters are expanded (not used literally).

&H0256 CURSOR/Pattern search/Search this line

Using the currently defined search string, search the current line only, and
if a match is not found, perform a macro fail, else exit normally. ARP
wildcard characters are expanded (not used literally).

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 78 of 93

Resource Help

Button Window Functions

&H0677 CURSOR/Pattern search/Set pattern string

You will be asked to supply a string, which will be used in future searches
of the "pattern" type.

Like all other string requests, string indirection may be used.

&H0380 CURSOR/Search/Exact match
&H0381 CURSOR/Search/Ignore case

Selecting "Case Sensitive" will cause most search functions to perform a case-
sensitive search. Selecting "Ignore Case" will cause a search to be
performed without regard to case. Only the following functions are affected:

 "CURSOR/Normal search/Find next occurrence"
 "CURSOR/Normal search/Find previous occurrence"
 "CURSOR/Normal search/Find nearest occurrence"
 "CURSOR/Pattern search/Find next occurrence"
 "CURSOR/Pattern search/Find previous occurrence"
 "CURSOR/Pattern search/Find nearest occurrence"
 "CURSOR/Buffer Search/Find next occurrence"
 "CURSOR/Buffer Search/Find previous occurrence"
 "CURSOR/Binary search/Find next occurrence"
 "CURSOR/Binary search/Find previous occurrence"

See also:
 "CURSOR/Search/Search from start of file"
 "CURSOR/Search/Search from end of file"
 "CURSOR/Search/Search from current position"

&H03B9 CURSOR/Search/Search from current position

This function resets "CURSOR/Search/Search from start of file" and
"CURSOR/Search/Search from end of file". Search functions will then
work in the normal manner of finding the next or previous occurrance of a
string from the current position.

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 79 of 93

Resource Help

Button Window Functions

&H03B8 CURSOR/Search/Search from end of file

Selecting this will begin the next search at the end of the file. You
would use this function when you want to find the last occurrance of a string.
This function will only affect searches done in the reverse direction.
These include:
 "CURSOR/Normal search/Find previous occurrence"
 "CURSOR/Pattern search/Find previous occurrence"
 "CURSOR/Buffer Search/Find previous occurrence"
 "CURSOR/Binary search/Find previous occurrence"

When you execute the search, the file will be searched from the end.
After the search, the FROM gadget will revert to CURRENT so that you can
search for the previous instance.

After a search following the use of this function, your old position wll be
found on the position stack, and may be recalled by the "CURSOR/Remember"
function.

See also:
 "CURSOR/Search/Search from start of file"
 "CURSOR/Search/Search from current position"

&H03B7 CURSOR/Search/Search from start of file

Selecting this will begin the next search from the start of the file. You
would use this function when you want to find the first instance of a string.
This function will only affect searches done in the forward direction. These
include:
 "CURSOR/Normal search/Find next occurrence"
 "CURSOR/Pattern search/Find next occurrence"
 "CURSOR/Buffer Search/Find next occurrence"
 "CURSOR/Binary search/Find next occurrence"

When you execute the search, the file will be searched from the beginning.
After the search, the FROM gadget will revert to CURRENT so that you can
search for the next instance.

After a search following the use of this function, your old position wll be
found on the position stack, and may be recalled by the "CURSOR/Remember"
function.

See also:
 "CURSOR/Search/Search from end of file"
 "CURSOR/Search/Search from current position"

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 80 of 93

Resource Help

Button Window Functions

&H0355 CURSOR/Symbol search/Find next occurrence
&H0356 CURSOR/Symbol search/Find previous occurrence
&H0354 CURSOR/Symbol search/Specify symbol

The "symbol search" functions allow you to find symbols by searching the
symbol definitions themselves, rather than disassembling each line of code
looking for symbols. This way, symbols can be found very quickly (around 500
times faster than performing a normal search). By selecting either "find
next occurrence" or "find previous occurrence", you are able to find every
occurence of the symbol.

Note that the forward reference of a label as in:

 LEA (doslibrary.MSG,PC),A1

is _not_ a symbol.

&H03A4 DISPLAY/Blank lines/Calls/OFF
&H039F DISPLAY/Blank lines/Conditional branches/OFF
&H03A1 DISPLAY/Blank lines/DBcc instructions/OFF
&H03A0 DISPLAY/Blank lines/DBRA instructions/OFF
&H03A2 DISPLAY/Blank lines/Entry points/OFF
&H03A3 DISPLAY/Blank lines/Returns/OFF
&H039E DISPLAY/Blank lines/Unconditional branches/OFF

Used to disable a particular type of blank line. See the "ON" function for
details.

&H039C DISPLAY/Hiliting/"Shop" labels/OFF
&H038F DISPLAY/Hiliting/BSS hunks/OFF
&H0392 DISPLAY/Hiliting/Chip load hunks/OFF
&H0391 DISPLAY/Hiliting/CODE hunks/OFF
&H039D DISPLAY/Hiliting/Custom labels/OFF
&H0390 DISPLAY/Hiliting/DATA hunks/OFF
&H0397 DISPLAY/Hiliting/Data type known/OFF
&H0396 DISPLAY/Hiliting/Data type uncertain/OFF
&H039A DISPLAY/Hiliting/DCB override/OFF
&H0393 DISPLAY/Hiliting/Fast load hunks/OFF
&H0398 DISPLAY/Hiliting/Internally-produced refs/OFF
&H0394 DISPLAY/Hiliting/Reloc32/OFF
&H0395 DISPLAY/Hiliting/Symbol scan/OFF
&H039B DISPLAY/Hiliting/Symbols/OFF
&H0399 DISPLAY/Hiliting/Uninitialized data/OFF

Used to switch off the particular type of hiliting. See the matching "ON"
function for details.

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 81 of 93

Resource Help

Button Window Functions

&H002E MACROS 1/Create/(#1) &H0165 MACROS 1/Create/(#11)
&H0030 MACROS 1/Create/(#2) &H0167 MACROS 1/Create/(#12)
&H0032 MACROS 1/Create/(#3) &H01CA MACROS 1/Create/(#13)
&H0157 MACROS 1/Create/(#4) &H01CB MACROS 1/Create/(#14)
&H0159 MACROS 1/Create/(#5) &H01CC MACROS 1/Create/(#15)
&H015B MACROS 1/Create/(#6) &H01CD MACROS 1/Create/(#16)
&H015D MACROS 1/Create/(#7) &H01CE MACROS 1/Create/(#17)
&H015F MACROS 1/Create/(#8) &H01CF MACROS 1/Create/(#18)
&H0161 MACROS 1/Create/(#9) &H01D0 MACROS 1/Create/(#19)
&H0163 MACROS 1/Create/(#10)

Start recording a macro.

&H002F MACROS 1/Execute/(#1) &H0166 MACROS 1/Execute/(#11)
&H0031 MACROS 1/Execute/(#2) &H0168 MACROS 1/Execute/(#12)
&H0033 MACROS 1/Execute/(#3) &H01E4 MACROS 1/Execute/(#13)
&H0158 MACROS 1/Execute/(#4) &H01E5 MACROS 1/Execute/(#14)
&H015A MACROS 1/Execute/(#5) &H01E6 MACROS 1/Execute/(#15)
&H015C MACROS 1/Execute/(#6) &H01E7 MACROS 1/Execute/(#16)
&H015E MACROS 1/Execute/(#7) &H01E8 MACROS 1/Execute/(#17)
&H0160 MACROS 1/Execute/(#8) &H01E9 MACROS 1/Execute/(#18)
&H0162 MACROS 1/Execute/(#9) &H01EA MACROS 1/Execute/(#19)
&H0164 MACROS 1/Execute/(#10)

Execute macro.

&H022D MACROS 1/Interactive/OFF

While creating a macro, you may be presented with various requesters, that
require a string. When you run the macro, the requesters do not normally
appear, instead the functions that require strings get them from inside the
macro body. By selecting "MACROS 1/Interactive/ON", you can force ReSource
to display requesters during macro execution, allowing you to view the
strings that were used during the macro creation, and you may even change
them for this macro invocation.

&H01FF MACROS 1/Suspend learn/Normal

While creating a macro, you may have to use some functions in order to
continue the macro creation, but you do not want the functions actually
recorded into the macro. In this situation, you can select "suspend", do
what you have to do, and then turn "suspend" off again, to continue the macro
creation as normal.

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 82 of 93

Resource Help

Button Window Functions

&H01D1 MACROS 2/Create/(#1) &H01DB MACROS 2/Create/(#11)
&H01D2 MACROS 2/Create/(#2) &H01DC MACROS 2/Create/(#12)
&H01D3 MACROS 2/Create/(#3) &H01DD MACROS 2/Create/(#13)
&H01D4 MACROS 2/Create/(#4) &H01DE MACROS 2/Create/(#14)
&H01D5 MACROS 2/Create/(#5) &H01DF MACROS 2/Create/(#15)
&H01D6 MACROS 2/Create/(#6) &H01E0 MACROS 2/Create/(#16)
&H01D7 MACROS 2/Create/(#7) &H01E1 MACROS 2/Create/(#17)
&H01D8 MACROS 2/Create/(#8) &H01E2 MACROS 2/Create/(#18)
&H01D9 MACROS 2/Create/(#9) &H01E3 MACROS 2/Create/(#19)
&H01DA MACROS 2/Create/(#10)

Start recording a macro.

&H01EB MACROS 2/Execute/(#1) &H01F5 MACROS 2/Execute/(#11)
&H01EC MACROS 2/Execute/(#2) &H01F6 MACROS 2/Execute/(#12)
&H01ED MACROS 2/Execute/(#3) &H01F7 MACROS 2/Execute/(#13)
&H01EE MACROS 2/Execute/(#4) &H01F8 MACROS 2/Execute/(#14)
&H01EF MACROS 2/Execute/(#5) &H01F9 MACROS 2/Execute/(#15)
&H01F0 MACROS 2/Execute/(#6) &H01FA MACROS 2/Execute/(#16)
&H01F1 MACROS 2/Execute/(#7) &H01FB MACROS 2/Execute/(#17)
&H01F2 MACROS 2/Execute/(#8) &H01FC MACROS 2/Execute/(#18)
&H01F3 MACROS 2/Execute/(#9) &H01FD MACROS 2/Execute/(#19)
&H01F4 MACROS 2/Execute/(#10)

Execute macro.

&H0324 MACROS 3/Create/(#39) &H0343 MACROS 3/Create/(#11)
&H033A MACROS 3/Create/(#2) &H0344 MACROS 3/Create/(#12)
&H033B MACROS 3/Create/(#3) &H0345 MACROS 3/Create/(#13)
&H033C MACROS 3/Create/(#4) &H0346 MACROS 3/Create/(#14)
&H033D MACROS 3/Create/(#5) &H0347 MACROS 3/Create/(#15)
&H033E MACROS 3/Create/(#6) &H0348 MACROS 3/Create/(#16)
&H033F MACROS 3/Create/(#7) &H0349 MACROS 3/Create/(#17)
&H0340 MACROS 3/Create/(#8) &H034A MACROS 3/Create/(#18)
&H0341 MACROS 3/Create/(#9) &H0327 MACROS 3/Create/(#19)
&H0342 MACROS 3/Create/(#10)

Start recording a macro.

&H0323 MACROS 3/Execute/(#39) &H0331 MACROS 3/Execute/(#11)
&H0328 MACROS 3/Execute/(#2) &H0332 MACROS 3/Execute/(#12)
&H0329 MACROS 3/Execute/(#3) &H0333 MACROS 3/Execute/(#13)
&H032A MACROS 3/Execute/(#4) &H0334 MACROS 3/Execute/(#14)
&H032B MACROS 3/Execute/(#5) &H0335 MACROS 3/Execute/(#15)
&H032C MACROS 3/Execute/(#6) &H0336 MACROS 3/Execute/(#16)
&H032D MACROS 3/Execute/(#7) &H0337 MACROS 3/Execute/(#17)
&H032E MACROS 3/Execute/(#8) &H0338 MACROS 3/Execute/(#18)
&H032F MACROS 3/Execute/(#9) &H0339 MACROS 3/Execute/(#19)
&H0330 MACROS 3/Execute/(#10)

Execute macro.

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 83 of 93

Resource Help

Button Window Functions

&H03AF OPTIONS 1/Abs size specifiers/Longword/OFF

Used to disable the particular type of size qualifier. See the "ON" function
for details.

&H0363 OPTIONS 1/Abs size specifiers/Longword/ON

If enabled, any absolute longword effective address will have the ".L" size
qualifier displayed:
 MOVEA.L (4),A6 ;no size qualifier
 MOVEA.L (4).L,A6 ;uses size qualifier

&H03B0 OPTIONS 1/Abs size specifiers/Optimize/OFF

Used to disable the particular type of size qualifier. See the "ON" function
for details.

&H0364 OPTIONS 1/Abs size specifiers/Optimize/ON

If enabled, any absolute longword effective address which could be optimized
to an absolute word effective address will have the ".W" size qualifier
displayed. Note that the ".L" size qualifier will only be shown if the
OPTIONS 1/Abs size specifiers/Longword" switch is currently on, and the
".W" will only be shown if the "OPTIONS 1/Abs size specifiers/Word" switch
is currently on.

&H03AE OPTIONS 1/Abs size specifiers/Word/OFF

Used to disable the particular type of size qualifier. See the "ON" function
for details.

&H0362 OPTIONS 1/Abs size specifiers/Word/ON

If enabled, any absolute word effective address will have the ".W" size
qualifier displayed:

 MOVEA.L (4),A6 ;no size qualifier
 MOVEA.L (4).W,A6 ;uses size qualifier

&H02BB OPTIONS 1/Allow/Auto labels/OFF
&H02BA OPTIONS 1/Allow/Auto labels/ON

This function determines whether the "LABELS/Create multiple/Reloc32"
function is called automatically after every "Open load file".

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 84 of 93

Resource Help

Button Window Functions

&H037C OPTIONS 1/Allow/EQUate value checks/OFF
&H037B OPTIONS 1/Allow/EQUate value checks/ON

If enabled, whenever a symbol is created, the symbol and symbol values are
compared to those in the equates table. If there is a clash of symbol names
(where the same symbol has two different symbol values) a macro fail will
result, and the symbol will NOT be created. See:
"CURSOR/Relative/Next error line"

&H03B5 OPTIONS 1/Allow/Error comments/OFF
&H03B4 OPTIONS 1/Allow/Error comments/ON

If enabled, "error comments" will be inserted into the saved ".asm" file.
These are actually full-line comments that ReSource adds, to lines for which
an error has been detected. The types of errors detected are set by the
"OPTIONS/Error detection/:" functions.

For example, if you had "OPTIONS/Error detection/Library calls" enabled, and
you saved a file containing the line:

 JSR (-$126,A6)

it would have a full-line comment appended:

 JSR (-$126,A6)
;fiX "_LVO" type symbol expected

The word "fiX" is meant to give you something that you can search for easily,
in your text editor.

&H0219 OPTIONS 1/Allow/Reference recognition/OFF
&H0218 OPTIONS 1/Allow/Reference recognition/ON

If this option is set to ON, references to memory locations within the
current file are recognized. For example, assuming that the absolute address
of the start of the current file is at $200000, the following lines might be
displayed with Reference recognition ON:

 dl $48638335
 dl START+$1097
 dl START+$3086

whereas if reference recognition was OFF, it would be displayed as:

 dl $48638335
 dl $201097
 dl $203086

Reference recognition is ON by default. If any pointer (32 bits) is in a
reloc32 area, the reference will be recognized regardless of the setting of
this option. If you want to disable only some references, you could use a
macro that gets the symbol value, and creates a symbol using the value as the
symbol itself:

STRINGS/Get/Symbol value
LABELS/Create single/Symbol

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 85 of 93

Resource Help

Button Window Functions

&H0295 OPTIONS 1/Assembler/Cape

This function specifies output suitable for the CAPE(TM) assembler. Having
selected this function does not guarantee CAPE(TM) compatible output - there
are various other options that will result in non-compatible output, such as
"OPTIONS/Pseudo opcodes/PUSH/POP/ON".

&H02B8 OPTIONS 1/Assembler/Macro68

This function specifies output suitable for the Macro68(TM) macro assembler.

&H0294 OPTIONS 1/Assembler/Metacomco

This function specifies output suitable for the Metacomco(TM) assembler.
Having selected this function does not guarantee Metacomco compatible output
- there are various other options that will result in non-compatible output,
such as "OPTIONS/Pseudo opcodes/PUSH/POP/ON".

&H018B OPTIONS 1/Show/Chip-load info/OFF
&H018A OPTIONS 1/Show/Chip-load info/ON

If this option is set to ON, where a section statement is displayed, and that
section either is forced to load into chip memory, or is forced to load into
fast memory, a ",CHIP" or ",FAST" will be appended to the section statement.

Not all assemblers support this parameter for the section statement, so you
may want to switch this option OFF if your assembler can't handle it.

&H035C OPTIONS 1/Show/Data comments/OFF
&H035B OPTIONS 1/Show/Data comments/ON

If enabled, comments will be created for every line, consisting of the hex
bytes that make up that line. This may be useful when comparing
disassemblies of two files, where you want to compare not only the mnemonics
and effective addresses, but the exact opcodes that make up the mnemonics and
effective addresses also.

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 86 of 93

Resource Help

Button Window Functions

&H01B1 OPTIONS 1/Show/DCB statements/OFF
&H01B0 OPTIONS 1/Show/DCB statements/ON

If this option is set to ON, "dcb" type statements will be used where
appropriate. For example, the following data:

 db 0
 db 0
 dl 7
 dl 8
 dl 8
 dl 8
 dl 8
 dl 8
 dl 8

will be shown as:

 dcb.b 2,0
 dl 7
 dcb.l 6,8

This is useful for shrinking the required .asm file size, especially where
there are large areas of zeroes.

&H018F OPTIONS 1/Show/End statement/OFF
&H018E OPTIONS 1/Show/End statement/ON

If this option is set to ON, the "END" statement will be displayed as the
last line in the file.

&H0181 OPTIONS 1/Show/End-of-line comments/OFF
&H0180 OPTIONS 1/Show/End-of-line comments/ON

If this option is set to ON, end-of-line comments will be displayed.
Normally, you will only turn end-of-line comments off when comparing ".asm"
files, where you are looking for something other than comment differences.

&H0183 OPTIONS 1/Show/Full-line comments/OFF
&H0182 OPTIONS 1/Show/Full-line comments/ON

If this option is set to ON, full-line comments will be displayed.
Normally, you will only turn full-line comments off when comparing ".asm"
files, where you are looking for something other than comment differences.

&H0189 OPTIONS 1/Show/Hidden labels/OFF
&H0188 OPTIONS 1/Show/Hidden labels/ON

If this option is set to ON, hidden labels (labels attached to a byte in the
middle of a line of code/data) will be displayed.

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 87 of 93

Resource Help

Button Window Functions

&H02A8 OPTIONS 1/Show/Label colons/OFF
&H02A7 OPTIONS 1/Show/Label colons/ON

This option will display colons ,":", after all labels.

&H017D OPTIONS 1/Show/Labels/OFF
&H017C OPTIONS 1/Show/Labels/ON

If this option is set to ON, labels will be displayed.
Normally, you will only turn labels off when comparing ".asm" files, where
you are looking for something other than label changes.

&H029A OPTIONS 1/Show/Leading zeroes/OFF
&H029B OPTIONS 1/Show/Leading zeroes/ON

Use these options to specify whether or not you wish the leading zeroes on
hex values to be shown, e.g., "$0000003A" versus "$3A".

&H02C9 OPTIONS 1/Show/Multiple constants/OFF
&H02C8 OPTIONS 1/Show/Multiple constants/ON

For byte, word, and longword lines, this option allows you to have many data
constants displayed on each line, rather than just one. ReSource will limit
the number of constants to your display width.

&H035D OPTIONS 1/Show/New Syntax/OFF
&H035E OPTIONS 1/Show/New Syntax/ON

Select old/new syntax. Old syntax is suitable only for disassembly programs
written specifically for the 68000 CPU. If you plan to use the "Metacomco"
or "CAPE" assemblers, then you will be stuck with using old syntax. If you
own the "Macro68" assembler, you are free to use new syntax for all 68000,
68010, 68020 and 68030 programs.

Many old assemblers incorrectly specified byte size branches as "Bcc.S" and
word size branches as "Bcc.L". Although this is incorrect, in order to
output code that will assemble properly, ReSource must use the same mnemonics
instead of the proper "Bcc.B" for a byte size branch, and "Bcc.W" for a word
size branch. The correct mnemonics will be used with new syntax.

&H035E OPTIONS 1/Show/New Syntax/ON

Select old/new syntax. Old syntax is suitable only for disassembly programs
written specifically for the 68000 CPU. If you plan to use the "Metacomco"
or "CAPE" assemblers, then you will be stuck with using old syntax. If you
own the "Macro68" assembler, you are free to use new syntax for all 68000,
68010, 68020 and 68030 programs.

Many old assemblers incorrectly specified byte size branches as "Bcc.S" and
word size branches as "Bcc.L". Although this is incorrect, in order to
output code that will assemble properly, ReSource must use the same mnemonics
instead of the proper "Bcc.B" for a byte size branch, and "Bcc.W" for a word
size branch. The correct mnemonics will be used with new syntax.

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 88 of 93

Resource Help

Button Window Functions

&H0171 OPTIONS 1/Show/Offsets/OFF

Turns off the displaying of offsets on lines that have no labels.

See "OPTIONS/Show.../Offsets/ON"

&H0170 OPTIONS 1/Show/Offsets/ON

On lines that do not have a label, display the offset of the start of that
line, as a 6-digit hex number. This can be handy when comparing two saved
".asm" files, as it allows you to compare not only the disassembled code, but
how long each instruction was also.

For example, after reassembling a file, you may find that the file length
differs, yet the saved ".asm" of the reassembled file appears to be identical
to the original disassembly. What is probably happening in this case is that
your assembler made different optimizations than the assembler which created
the original program. For example, the "movea.l (4),A6" instruction can be
either 4 or 6 bytes long, depending on which effective address was used.

&H018D OPTIONS 1/Show/Section statements/OFF
&H018C OPTIONS 1/Show/Section statements/ON

If this option is set to ON, section statements will be displayed.

&H02A6 OPTIONS 1/Show/Separate labels/OFF
&H02A5 OPTIONS 1/Show/Separate labels/ON

Under normal conditions, if a label is longer than 20 characters, it is
broken at that point, and the remainder is shown on the next line. This
option forces the entire label, regardless of its length, to be shown on one
line.

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 89 of 93

Resource Help

Button Window Functions

&H035F OPTIONS 1/Show/Strict Mnemonics/OFF
&H0360 OPTIONS 1/Show/Strict Mnemonics/ON

There are several instructions that are created by assemblers, which can in
the source code use a more generic name. For example, many assemblers will
accept the "MOVE" instruction where a "MOVEA" instruction should have been
used. Similarly, where a "ORI" instruction should be used, many assemblers
will accept just "OR" instead. Macro68 can operate in either strict or
relaxed mode. This means that in "relaxed" mode, if you use an instruction
that doesn't make complete sense, it will try to guess as to what you really
meant. In strict mode, you will be expected to supply the correct
instructions every time. ReSource supports the strict and relaxed modes as
used by Macro68:

 Strict mnemonic Relaxed mnemonic
 ADDA ADD
 ADDI ADD
 ANDI AND
 CMPA CMP
 CMPI CMP
 DIVS.W DIVS
 DIVU.W DIVU
 EORI EOR
 LINK.W LINK
 MOVEA MOVE
 MULS.W MULS
 MULU.W MULU
 ORI OR
 SUBA SUB
 SUBI SUB

&H017F OPTIONS 1/Show/Symbols/OFF
&H017E OPTIONS 1/Show/Symbols/ON

If this option is set to ON, symbols will be displayed.
Normally, you will only turn symbols off when comparing ".asm" files, where
you are looking for something other than symbol differences.

&H03AB OPTIONS 2/Error detection/AFLINE/OFF
&H03A7 OPTIONS 2/Error detection/Bad alignment/OFF
&H03A8 OPTIONS 2/Error detection/Code reference/OFF
&H03A5 OPTIONS 2/Error detection/Code terminate/OFF
&H03A9 OPTIONS 2/Error detection/Data reference/OFF
&H03AD OPTIONS 2/Error detection/Illegal code/OFF
&H03AC OPTIONS 2/Error detection/Library calls/OFF
&H03A6 OPTIONS 2/Error detection/Missing label/OFF
&H03AA OPTIONS 2/Error detection/START+/OFF

Used to disable the particular type of error detection. See the "ON"
function for details.

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 90 of 93

Resource Help

Button Window Functions

&H030F OPTIONS 2/Error detection/AFLINE/ON
&H030B OPTIONS 2/Error detection/Bad alignment/ON
&H030C OPTIONS 2/Error detection/Code reference/ON
&H0309 OPTIONS 2/Error detection/Code terminate/ON
&H030D OPTIONS 2/Error detection/Data reference/ON
&H0379 OPTIONS 2/Error detection/EQU values/ON
&H0311 OPTIONS 2/Error detection/Illegal code/ON
&H0310 OPTIONS 2/Error detection/Library calls/ON
&H030A OPTIONS 2/Error detection/Missing label/ON
&H030E OPTIONS 2/Error detection/START+/ON

Set/clear types of errors to detect. See:
"CURSOR/Relative/Next error line" for details.

&H0676 OPTIONS 2/Interface/Delayed refresh/OFF
&H0675 OPTIONS 2/Interface/Delayed refresh/ON

Making ReSource Intuition compatible has slowed down TitleBar rendering, and
consequently functions that update the TitleBar frequently. This function
was added to cope with this problem.

When this switch is set, and the following conditions are met, the TitleBar
will only be updated once per page (~256 bytes). Note that the refresh will
not necessarily happen on a page boundary.

 1. The function being executed is a Normal or Pattern search, a Backward
 Reference, or "PROJECT/Disassemble",
 2. A message does not need to be displayed, or
 3. The TitleBar does not need to refreshing for other reasons.

This default for this switch is OFF.

&H0173 OPTIONS 2/Interface/Display Beep/OFF
&H0172 OPTIONS 2/Interface/Display Beep/ON

Many functions demand attention from the user, and a DisplayBeep() is used
for this purpose. Normally, this will make the screen flash. However, if
you have run the program "BeepIt", or a similar DisplayBeep() replacement,
you will hear an audible "beep" instead. If you don't want the flash/beep,
then switch it off.

&H002B OPTIONS 2/Interface/Feedback Delays/OFF
&H002A OPTIONS 2/Interface/Feedback Delays/ON

If you have User feedback set to "OFF", then the setting of this function is
irrelevant. If feedback is ON, you may occasionally find that feedback messages
are being displayed too fast for you to read them. This is especially so when
opening a load file, since many informative messages can be displayed in between
raster scans, which means that you don't actually get to see some of the
messages at all.

If you set feedback delays to "ON", there will be a one second delay after
each message is displayed, which should be plenty of time to read each
message. While you hold the menu button down, feedback messages are skipped
altogether.

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 91 of 93

Resource Help

Button Window Functions

&H0027 OPTIONS 2/Interface/User Feedback/OFF

Stops ReSource from offering informative title-bar messages.

&H0026 OPTIONS 2/Interface/User Feedback/ON

Allows ReSource to offer informative messages when appropriate.

&H02B5 OPTIONS 2/Interface/Verbose saves/OFF
&H02B3 OPTIONS 2/Interface/Verbose saves/ON

The "SAVE/Save .asm" functions give you a profile of the source code as it is
saved. This may be disabled by selecting the
"OPTIONS/Allow.../Verbose saves/OFF" function. Each entry in the displayed
table is counted as that condition occurs during the save, and the totals are
displayed continuously. It is possible to get a printout of this and any
other screen in ReSource, using the new "SAVE/Save screen" function. Speed
penalty for enabling this function is approx. 10%.

&H038E OPTIONS 2/Pseudo opcodes/BLO/BHS/OFF
&H038D OPTIONS 2/Pseudo opcodes/BLO/BHS/ON

If enabled, "BCC" instructions are replace by "BHS", and "BCS" instructions
are replace by "BLO".

&H038A OPTIONS 2/Pseudo opcodes/PUSH/POP/OFF
&H0389 OPTIONS 2/Pseudo opcodes/PUSH/POP/ON

If enabled, instructions of the "MOVE.L" type that move a register from/to
the stack are replaced by the "PUSH" and "POP" pseudo-opcodes, as used in the
Macro68(TM) assembler.

&H038C OPTIONS 2/Pseudo opcodes/PUSHM/POPM/OFF
&H038B OPTIONS 2/Pseudo opcodes/PUSHM/POPM/ON

If enabled, instructions of the "MOVEM.L" type that move registers from/to
the stack are replaced by the "PUSHM" and "POPM" pseudo-opcodes, as used in
the Macro68(TM) assembler.

&H03B1 OPTIONS/Error detection/EQU values/OFF

Used to disable the particular type of error detection. See the "ON"
function for details.

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 92 of 93

Resource Help

Button Window Functions

&H02F7 SYMBOLS/Load user symbols/#1 &H0301 SYMBOLS/Load user symbols/#11
&H02F8 SYMBOLS/Load user symbols/#2 &H0302 SYMBOLS/Load user symbols/#12
&H02F9 SYMBOLS/Load user symbols/#3 &H0303 SYMBOLS/Load user symbols/#13
&H02FA SYMBOLS/Load user symbols/#4 &H0304 SYMBOLS/Load user symbols/#14
&H02FB SYMBOLS/Load user symbols/#5 &H0305 SYMBOLS/Load user symbols/#15
&H02FC SYMBOLS/Load user symbols/#6
&H02FD SYMBOLS/Load user symbols/#7
&H02FE SYMBOLS/Load user symbols/#8
&H02FF SYMBOLS/Load user symbols/#9
&H0300 SYMBOLS/Load user symbols/#10

Load a user-defined symbol base. If you select one that has already been
loaded, it will replace the previous one. When you use the
"PROJECT/Save Config" function, it also saves the names of the user-defined
symbol bases, as those given when you first loaded them. So, to ensure that
ReSource will always be able to load your user-defined symbol bases at
startup, when loading a symbol base, supply a meaningful pathname, rather
than just the filename by itself (as you might do if the symbol base were in
the current directory at the time).

&H02DC SYMBOLS/User-defined symbols/#1
&H02DD SYMBOLS/User-defined symbols/#2
&H02DE SYMBOLS/User-defined symbols/#3
&H02DF SYMBOLS/User-defined symbols/#4
&H02E0 SYMBOLS/User-defined symbols/#5
&H02E1 SYMBOLS/User-defined symbols/#6
&H02E2 SYMBOLS/User-defined symbols/#7
&H02E3 SYMBOLS/User-defined symbols/#8
&H02E4 SYMBOLS/User-defined symbols/#9
&H02E5 SYMBOLS/User-defined symbols/#10
&H02E6 SYMBOLS/User-defined symbols/#11
&H02E7 SYMBOLS/User-defined symbols/#12
&H02E8 SYMBOLS/User-defined symbols/#13
&H02E9 SYMBOLS/User-defined symbols/#14
&H02EA SYMBOLS/User-defined symbols/#15

Create a symbol, using a user-defined symbol base. The user-defined symbol
base must have been previously loaded using "SYMBOLS 1/Load user symbols/".
For details on the format of a user-defined symbol base, see the accompanying
text file "UserSymbols.doc".

printed Sat 31/01/2015 01:22 pmRSRCE_HELP : V0.01 page 93 of 93

